
Thèse

présentée à
L’université Paris Diderot (Paris 7) Sorbonne Paris Cité

pour obtenir le titre de
Docteur
spécialité

Informatique

Checking a Checker

Verasco: a Formally Verified C
Static Analyzer

soutenue par
Jacques-Henri Jourdan

le 26 mai 2016

devant le jury composé de :

Antoine Miné Rapporteur, Examinateur
Tobias Nipkow Rapporteur
Yves Bertot Examinateur
Patrick Cousot Examinateur
Roberto Di Cosmo Examinateur
David Pichardie Examinateur
Francesco Logozzo Examinateur
Xavier Leroy Directeur de thèse, Examinateur

This document has been generated using commit 2128f4d (Tue Aug 23 21:56:53 2016).

Résumé

Afin de développer des logiciels plus sûrs pour des applications critiques, certains ana-
lyseurs statiques tentent d’établir, avec une certitude mathématique, l’absence de certains
types de bugs dans un programme donné. Une limite possible à cette approche est l’éven-
tualité d’un bug affectant la correction de l’analyseur lui-même, éliminant ainsi les garanties
qu’il est censé apporter.
Dans cette thèse, nous proposons d’établir des garanties formelles sur l’analyseur lui-

même : nous présentons la conception, l’implantation et la preuve de sûreté en Coq de
Verasco, un analyseur statique formellement vérifié utilisant l’interprétation abstraite pour
le langage ISO C99 avec l’arithmétique flottante IEEE754 (à l’exception de la récursion
et de l’allocation dynamique de mémoire). Verasco a pour but d’établir l’absence d’erreur
à l’exécution des programmes donnés. Il est conçu selon une architecture modulaire et
extensible contenant plusieurs domaines abstraits et des interfaces bien spécifiées. Nous
détaillons le fonctionnement de l’itérateur abstrait de Verasco, son traitement des entiers
bornés de la machine, son domaine abstrait d’intervalles, son domaine abstrait symbolique
et son domaine abstrait d’octogones. Verasco a donné lieu au développement de nouvelles
techniques pour implémenter des structures de données avec partage dans Coq.

Abstract

In order to develop safer software for critical applications, some static analyzers aim at
establishing, with mathematical certitude, the absence of some classes of bug in the input
program. A possible limit to this approach is the possibility of a soundness bug in the static
analyzer itself, which would nullify the guarantees it is supposed to deliver.
In this thesis, we propose to establish formal guarantees on the static analyzer itself:

we present the design, implementation and proof of soundness using Coq of Verasco, a
formally verified static analyzer based on abstract interpretation handling most of the ISO
C99 language, including IEEE754 floating-point arithmetic (except recursion and dynamic
memory allocation). Verasco aims at establishing the absence of erroneous behavior of the
given programs. It enjoys a modular extendable architecture with several abstract domains
and well-specified interfaces. We present the abstract iterator of Verasco, its handling of
bounded machine arithmetic, its interval abstract domain, its symbolic abstract domain
and its abstract domain of octagons. Verasco led to the development of new techniques for
implementing data structure with sharing in Coq.

iii

Remerciements
Il est des jours où l’on regarde derrière soi et où l’on est ému par le chemin accompli. Évi-
dement, je ne peux m’empêcher de penser à toutes ces personnes sans qui tout cela n’aurait
pu arriver. Elles sont si nombreuses que j’en oublierai sûrement : aussi, je m’excuse d’avance
auprès de celles et ceux qui liront intrépidement ces lignes en vue d’y voir l’expression de
ma plus grande gratitude, mais qui seront déçus de ne pas y être représentés à leurs justes
valeurs.
Tout d’abord, mes plus chaleureux remerciements vont à Xavier Leroy, mon directeur

de thèse avec lequel j’ai eu le privilège de travailler pendant ces quatre années et demie.
En me considérant plus comme l’un de ses collègues que comme son étudiant, Xavier a
su me donner une totale liberté dans mes recherches tout en gardant un œil bienveillant
sur mon travail pour m’éviter d’explorer des impasses ou me suggérer des améliorations
en utilisant son talent pour rendre simples les problèmes complexes. Ma curiosité a pu se
nourrir de sa grande culture, allant de la conception des orgues au jeu vidéo GTA en passant
par les bizarreries de certaines architectures d’ordinateurs. Enfin, je ne peux que m’incliner
devant la patience avec laquelle il a relu chaque phrase de ma thèse, pour corriger mon trop
mauvais anglais ou me suggérer des améliorations techniques, tout en restant pragmatique
en m’évitant de longues réécritures.
Je remercie chaleureusement mes rapporteurs, Antoine Miné et Tobias Nipkow. C’est un

grand honneur de savoir que mon travail a reçu une relecture attentive de leur part, et
qu’il a pu susciter leur intérêt. J’imagine bien que certaines parties de ce document aient
pu leur parraître inutilement longues ou trop techniques, mais leur intérêt n’en a pas été
amoindri pour autant, et je leur en suis reconnaissant. Enfin, je remercie Antoine Miné pour
les innombrables corrections qu’il m’a proposées pour ce document.
Je remercie les autres membres de mon jury : Yves Bertot, Patrick Cousot, Roberto Di

Cosmo, Francesco Logozzo et David Pichardie. Ils me font l’honneur de se libérer et, pour
certains, de se déplacer de loin afin de juger mon travail. Certains me connaissent depuis
quelques années déjà : je remercie en particulier Francesco Logozzo et Patrick Cousot de
m’avoir initié à l’interprétation abstraite lors de mon stage à Microsoft Research.
Je remercie Arthur Charguéraud, Pierre Courtieu et Julien Crétin, qui ont relu des cha-

pitres entiers de ma thèse alors qu’ils étaient encore à un stade préliminaire, et donc indé-
chiffrables, et m’ont fait part de leur précieuses remarques.
Je remercie tous les membres du projet Verasco avec qui j’ai travaillé et sans qui, évi-

dement, cette thèse n’existerait pas. Cette coopération scientifique fructueuse, de plus de
quatre ans, a débouché, entre autres, sur le développement de l’analyseur statique qui est
le sujet de ce document. Au fil des régulières visioconférences entres ses différents membres,
notre projet avançait petit à petit. Je remercie tout particulièrement Vincent Laporte, doc-
torant dans l’équipe Celtique, à Rennes, pour le travail qu’il a accompli, et Sandrine Blazy
et David Pichardie, ses directeurs de thèse, pour l’accompagnement qu’ils nous ont apporté.
Je remercie Jérôme Feret et Xavier Rival pour l’expertise qu’ils nous ont apportée sur l’ana-
lyseur Astrée et Sylvie Boldo et Guillaume Melquiond pour m’avoir fait découvrir le monde
merveilleux des nombres flottants. Enfin, j’ai une pensée pour l’équipe grenobloise qui tra-
vailla sur le domaine polyhédrique : Sylvain Boulmé, Alexis Fouilhé, David Monniaux et
Michaël Périn.

v

Je suis particulièrement reconnaissant envers Jean-Christophe Filliâtre : depuis qu’il a
été mon professeur de compilation en première année d’ENS, il m’a toujours encouragé
à faire de la recherche. J’ai un souvenir ému du moment où, au pot de la soutenance de
thèse d’Arthur, il m’a présenté à Xavier pour un stage. Je le remercie aussi de m’avoir fait
confiance pour prendre en charge les travaux dirigés de son cours de compilation.
L’équipe Gallium a été, pour moi, le contexte rêvé pour faire ma thèse. Non seulement le

niveau scientifique y est excellent, mais ses membres en font une équipe où il est agréable
de travailler. Je les remercie donc pour les interminables discussions au coin café, souvent
techniques mais parfois moins, qui m’ont motivé à prendre la fameuse navette Inria tous les
matins pour aller jusqu’à Rocquencourt. En particulier, je remercie Damien Doligez pour
sa passion pour l’électronique, Fabrice Le Fessant pour ses débats endiablés, Luc Maranget
pour son huile d’olive palestinienne, François Pottier pour ses westerns, Didier Rémy pour
son expertise de TEX, et Mike Rainey et Umut Acar pour leur constante bonne humeur. J’ai
une pensée particulière pour Jonathan Protzenko dont j’ai pu aprécier les goûts musicaux
parfois étranges en partageant un bureau à Rocquencourt ; pour Thomas Braibant avec qui
j’ai travaillé sur ce qui est devenu le chapitre 9 de cette thèse ; et pour Gabriel Scherer,
son “café-vous-fait”, son Gagablog et son dévouement pour OCaml. Je remercie tous les
autres jeunes chercheurs et stagiaires que j’ai côtoyés plus ou moins longtemps et qui ont
tous contribué à faire de Gallium une équipe unique : Vitalii Aksenov, Thibaut Balabonski,
Pierre-Evariste Dagand, Maxime Dénès, Keryan Didier, Jacques-Pascal Delpaix, Benjamin
Farinier, Armaël Guéneau, Cyprien Mangin, Filip Sieczkowski et Thomas Williams.
Je remercie le groupe des coureurs du centre Inria Rocquencourt qui m’ont permis de

garder une condition physique convenable pendant ces quelques années malgré, il faut le
dire, mon manque de motivation. Je me rappelle cette randonnée mémorable que nous avons
faite autour du Puy de Sancy avec Jonathan, Sarah et Victorien. Merci aussi à Guilherme,
Pauline, Philippe, Renaud et Thierry.
Mon doctorat n’aurait pas été le même sans le séminaire des doctorants du centre Inria

Rocquencourt, dont j’ai participé à l’organisation pendant les deux dernières années. Merci à
Jonathan et Elisa de nous avoir transmis cette responsabilité, et merci à Georgios, Matteo,
Pauline et Thomas d’avoir aussi participé. J’espère que ce séminaire contribuera encore
longtemps aux échanges entre les différents thèmes de recherche d’Inria.
Je remercie les “amis d’Ulminfo” pour avoir été présents depuis que nous nous sommes

connus lors de notre première année à l’ENS. Présents 24h/24 sur IRC lorsqu’un besoin de
procrastination urgent se faisait sentir, ils étaient aussi des confidents avec lesquels partager
en cas de besoin. Merci donc à Antoine, Guillaume, Guillaume, Louis, Michael, Pablo, Pierre
et Stéphane. J’espère que nous pourrons toujours conserver cette complicité.
J’ai une pensée émue pour ma famille. Je dois dire que cette thèse leur doit beaucoup :

parce que je ne serais pas ici sans eux ; parce qu’ils m’ont donné ma curiosité scientifique et
mon goût pour les sciences et l’informatique en particulier ; et parce qu’ils m’ont toujours
encouragé dans tout ce que j’ai entrepris. Merci donc, Maman, Papa, Adeline, Arnaud,
Catherine, Cécile, Claire, Dominique, Nicolas, Nicolas, et leurs enfants.
Pour finir, Marie-Karelle, je te remercie pour tout. Pour avoir été présente tous les jours,

pour m’avoir soutenu même lorsque je passais des soirées, des nuits et des week-ends entiers
à travailler, pour avoir supporté ma mauvaise humeur lorsque, par exemple, un papier avait
été rejeté (à tort, bien entendu), pour accepter mon départ à Sarrebruck sans m’en vouloir...
J’ai la chance que tu m’accompagnes et me rendes heureux chaque jour, alors Merci.

vi

Contents

0. Introduction 1
0.1. Software Safety and Formal Methods . 1
0.2. Context and Goals of this Project . 2
0.3. Contributions and Structure of this Document 3

I. Context 7

1. Introduction to Functional Formal Verification of Software 9
1.1. Formalizing Proofs of Programs . 9

1.1.1. The Toy Language and its Operational Semantics 9
1.1.2. Reasoning on Toy Programs . 12
1.1.3. Weakest Preconditions and Deductive Verification 15
1.1.4. Model Checking . 16
1.1.5. Dependent Type Systems . 17

1.2. The Coq Proof Assistant . 18
1.2.1. Coq as a Programming Language . 18
1.2.2. The Curry-Howard Correspondence : Coq as a Proof Assistant . . . 19
1.2.3. Inductive and Coinductive Types in Coq 19
1.2.4. Extracting OCaml Programs from Coq Terms 22
1.2.5. Axioms . 23

1.3. Other Formal Verification Projects . 23
1.3.1. Formal Verification of Programming Tools 24
1.3.2. Formal Verification of Operating System Components 25
1.3.3. Verification of Security Properties 26
1.3.4. Formally Verified Mathematical Theorems 26

2. Introduction to Abstract Interpretation 29
2.1. Abstract Interpretation Concepts . 29

2.1.1. Lattices . 30
2.1.2. Galois Connections . 31
2.1.3. Transfer Functions . 32
2.1.4. Reductions . 32
2.1.5. Products of Abstract Domains . 33

2.2. Analyzing Toy Programs . 34
2.2.1. Collecting Semantics . 34
2.2.2. Approximating the Collecting Semantics 36
2.2.3. Approximating Sets of Environments : Non-Relational Abstractions 36
2.2.4. Abstract Semantics . 37
2.2.5. Deducing Properties of the Program 39
2.2.6. Structural Abstract Interpretation 40

vii

Contents

2.3. State of the Art in Static Analysis by Abstract Interpretation 42
2.3.1. Static Analyzers Based on Abstract Interpretation 43
2.3.2. Mechanization of Abstract Interpretation 43

II. Formally Verified Abstract Interpretation 47

3. A Modular Architecture 49
3.1. Abstract Interpretation in Practice . 49

3.1.1. Galois Connections and Lattice Structure 49
3.1.2. Widening Operator . 53

3.2. Abstract Domains Hierarchy . 56
3.2.1. State Abstract Domain Interface . 58
3.2.2. Machine Numerical Domain Interface 60
3.2.3. Ideal Numerical Domain Interface 63

3.3. Communication Between Numerical Abstract Domains 64
3.3.1. Message Channels . 65
3.3.2. Query Channels . 68
3.3.3. Internal Interface for Numerical Abstract Domains 71
3.3.4. Related Work on Abstract Domains Combination 73

4. Iterating Over the C#minor Language 75
4.1. The C#minor Language . 75

4.1.1. Syntax . 75
4.1.2. Motivation for C#minor . 77
4.1.3. Formal Semantics . 78

4.2. An Axiomatic Semantics for C#minor . 83
4.2.1. Semantic Rules . 83
4.2.2. Consequence Rules . 88
4.2.3. Conjunction and Disjunction Rules 89
4.2.4. Loop Unrolling and Decreasing Iterations 93
4.2.5. Soundness of the Hoare Logic . 94

4.3. Design and Proof of the Abstract Interpreter 98
4.3.1. Transfer Functions . 98
4.3.2. Soundness . 101
4.3.3. Inferring Invariants Using Widening and Decreasing Steps 103

4.4. Related Work and Perspectives . 105
4.4.1. Comparison with Related Work . 105
4.4.2. Possible Extensions to the Interpreter 106

III. The Numerical Backend of Verasco 109

5. Handling Machine Arithmetic 111
5.1. Relating Ideal Environments and Machine Environments 112
5.2. Translating Expressions . 113

5.2.1. Leaves : Variables, Literals and Non-Deterministic Atoms 113
5.2.2. Operators Preserving Classes Modulo 2N 114
5.2.3. Other Integer Arithmetic Operators 114
5.2.4. Floating-Point Arithmetic . 115

viii

Contents

5.2.5. Conversion Operators . 116
5.3. Handling Ambiguity . 116
5.4. Abstract Transfer Functions and Lattice Operations 118
5.5. Weaknesses and Possible Improvements . 119

6. Non-Relational Numerical Abstract Domains 121
6.1. Common Non-Relational to Relational Functor 121

6.1.1. Pointwise Operations : ⊑, and ▽ . 122
6.1.2. Forward Analysis of Expressions . 122
6.1.3. Implementation of assign . 124
6.1.4. Backward Analysis of expressions . 124
6.1.5. Receiving Messages . 126

6.2. Interval Abstract Domain . 126
6.2.1. Integer Arithmetic . 127
6.2.2. Bitwise Operators . 130
6.2.3. Forward Transfer Functions for Floats 131
6.2.4. Backward Transfer Functions for Floating-Point Arithmetic 132
6.2.5. Cooperation with Other Domains . 133

6.3. Arithmetical Congruences . 134

7. Symbolic Equalities 137
7.1. Abstract Environments and their Concretization 138

7.1.1. Data Structures . 139
7.1.2. Concretization . 140

7.2. Lattice Operations . 140
7.3. Abstract Transfer Functions and Channels 141
7.4. Examples . 142

8. Octagons and Expression Linearization 145
8.1. Expression Linearization . 147

8.1.1. Quasi-Linear Expressions . 147
8.1.2. Converting Expressions into Quasi-Linear Expressions 148
8.1.3. Linearization Abstract Domain . 150

8.2. Theoretical Setting for Octagons . 151
8.2.1. Difference Bound Matrices . 152
8.2.2. Closures . 153
8.2.3. Comparing Difference Bound Matrices 158
8.2.4. Forgetting Variables . 159
8.2.5. Join . 161
8.2.6. Assuming Constraints . 164
8.2.7. Widening . 169
8.2.8. A Note on Tightening . 172

8.3. Implementation of Octagons in Verasco . 174
8.3.1. Data Structures for Octagons in Verasco 174
8.3.2. Implementing Abstract Operations 176
8.3.3. Cooperation with Other Domains . 177

ix

Contents

IV. Perspectives and Conclusions 179

9. Data Structures with Sharing in Coq 181
9.1. Safe Physical Equality in Coq : the physEq Approach 182

9.1.1. Exploiting Sharing When Combining Maps 183
9.1.2. Improving Sharing Using Physical Equality 184

9.2. Introduction to Hash-Consing, Memoization and BDDs 185
9.2.1. A Primer on Binary Decision Diagrams 186
9.2.2. Memoization in Coq : the State of the Art 188
9.2.3. Implementing BDDs in Coq. 190

9.3. Pure BDD Implementations . 191
9.3.1. The pure-deep Approach . 191
9.3.2. The pure-shallow Approach . 198

9.4. From Pure Data Structures to Persistent Data Structures Via Extraction . 200
9.4.1. The smart Approach . 202
9.4.2. The smart+uid Approach . 205

9.5. Comparison . 207
9.6. Related Work . 210

10.Conclusions 213
10.1. Achievements . 213

10.1.1. Formalization Effort . 213
10.1.2. Expected Impact . 214

10.2. Perspectives and Future Work . 214
10.2.1. Using New Abstract Domains and Analysis Techniques 215
10.2.2. Improving Performance . 215
10.2.3. Leveraging the Results of the Analyses 217
10.2.4. Experimenting Verasco on Real Code 217

x

Chapter 0
Introduction

0.1. Software Safety and Formal Methods
We rely heavily on software for many tasks. The amount of work and money needed to
develop useful software is enormous, which leads to the development of better tools and
methods to ease this task. In particular, one problem that needs to be addressed is the
presence of bugs. Bugs, which arise when a program does not behave as expected because
of a defect in its design or implementation, seem to be an unavoidable side effect of software
development. They range from innocuous easily fixable annoyances for the user to serious
defects in critical devices leading to catastrophic consequences such as destruction of very
costly equipment or even death. We can cite many infamous examples of software bugs
such as the death of patients due to buggy software controlling the Therac-25 radiotherapy
equipment [LT93], or the destruction of the first Ariane 5 prototype rocket [ari96].
Therefore, much effort is made to avoid bugs during the development of software and

before its deployment. To this end, the most common method is testing: the program
is run on a set of inputs in a more or less realistic context and its behavior is checked
to correspond to what is expected. Even if this can be very efficient at all the stages of
the development, testing suffers from the fundamental issue that it cannot cover all the
possible inputs, and hence it can miss bugs. Moreover, in the context of critical software,
the coverage requirements needed for tests make them very costly.
As a result, research is conducted to avoid bugs using formal tools relying on mathematics

that would prove the absence of bug with strong certitude. These tools differ from bug
finders (such as, e.g., Clang Static Analyzer or Coverity) that aim at easing the search for
bugs by reporting suspicious code to developers: instead, formal verification tools guarantee
with strong mathematical certitude the absence of some classes of bugs in the program.
Formal verification of software can target very different objectives. We can classify these

objectives depending on the kind of formal guarantees established. One of the first goal
that can be targeted is the absence of runtime error. In this scenario, the only guarantee
given by the formal method is that the program will not have an erroneous behavior. In
particular, this does not mean that the output of the program will be correct. Depending on
the case, the erroneous behaviors handled by the method can include, for example, illegal
memory accesses (such as accessing an array out of its bounds, or dereferencing an invalid
pointer), arithmetic errors (such as divisions by 0 or overflows), uncaught exceptions or
even non-termination.

1

Chapter 0. Introduction

On the other end of the spectrum, one could want to formally verify the functional
correctness of programs. In this other scenario, in addition to the absence of runtime
error, we formally verify that the program computes the expected result. This goal is more
ambitious than the previous one, because of two main reasons. The first difficulty is the
need to define precisely what we mean by “expected result”. This definition needs to be
done using formal tools with mathematical strength. This definition is called the formal
specification of the program. In the case of complex software, the specification problem is
particularly challenging or even sometimes practically impossible. The second difficulty is
the complexity of the reasoning needed to prove functional correctness: indeed, the program
can use complex algorithms, advanced data structures or an intricate design architecture.
A common obstacle of all verification methods is Rice’s theorem. Informally, this the-

orem states that any non-trivial properties on the semantic properties of programs is not
decidable. More precisely, if we have a property P on the behavior of programs that is
not always true or false, then there does not exist a program that can decide whether the
behavior of a given program meets P . In the context of formal verification of software, this
means that we cannot build a universal tool that will guarantee some interesting property
for any given valid program. This applies to proving functional correctness, but also to
checking the absence of runtime error.
In order to mitigate the impossibility of a universal verification tool stated by Rice’s

theorem, a wide range of tools have been developed in the area of formal verification,
sacrificing either completeness or decidability. Some of them, such as static analyzers based
on abstract interpretation, aim at being fully automated, but can often wrongly classify a
correct program as incorrect. Moreover, they typically do not have the reasoning strength
necessary to prove functional correctness. At the other extreme, some other tools, such as
proof assistants, are able to prove correct a large variety of programs, but they need a lot
of user interaction. Several of these methods are used throughout this thesis for different
purposes: we use the reasoning power of the Coq proof assistant in order to prove the
soundness of an automatic static analyzer, and this proof uses some techniques borrowed
from deductive verification.

0.2. Context and Goals of this Project

A static analyzer based on abstract interpretation is a tool that analyzes programs without
executing them, and establishes some of their properties, such as the absence of runtime
error. A good example of such a static analyzer is Astrée [BCC+02], used to check the
absence of runtime error in large critical embedded software. Astrée has been used to verify
the fly-by-wire systems used in the A340 and A380 planes, which are large safety-critical
programs comprising several hundreds of thousands of lines of code. In order to achieve
such a goal, the designers of Astrée needed to develop complex algorithms using difficult
mathematics. Therefore, it is far from obvious that the implementation of Astrée itself is
free from any bugs, which decreases the strength of the guarantees it provides.
More generally, a natural candidate for formal verification are formal verification tools

themselves: indeed, a common criticism made to these tools is that they can themselves be
buggy, and hence they can miss wrong behaviors in the software they verify. In particular,
we propose, in this thesis, to check the checker, or, more precisely, to see how far we can go
verifying a static analyzer aimed at guaranteeing the absence of runtime error in a program.
Several attempts have been made toward the formal verification of static analyzers based
on abstract interpretation [Pic05, CKCY13]: in our case, the aim is to build a realistic
tool that could be used to check real programs. Our tool, called Verasco, takes as input a

2

0.3. Contributions and Structure of this Document

realistic language, C, and contains a complex combination of abstract domains in order to
do advanced reasoning on the behavior of the analyzed programs. We worked in cooperation
with the designers of Astrée in order to leverage their experience in writing such a powerful
analyzer. Of course, Verasco is not as powerful as Astrée, but it shares many of its design
ideas. Its main advantage over a non-verified static analyzer such as Astrée is the guaranteed
absence of soundness bugs in its design and implementation, owing to the formal proof
accompanying its code.
The formal verification of a complex tool such as a static analyzer is an ambitious goal.

Fortunately, this project builds on previous achievements in formal verification, in particular
CompCert [Ler09a], a formally verified compiler for the C language. It includes, using
mathematical tools, the description of its source language, which is a large subset of C99 and
the description of its target language, PowerPC, ARM or x86 assembly. The full functional
correctness of its implementation is formally proved: it comes with a mathematical argument
stating that the behavior of the generated assembly code is permitted by the input C code.
CompCert is written using Coq [Coqa], which is both a programming language, allowing
us to write software, and a proof assistant, allowing us to prove mathematical properties
about this software.
Recent advances in computer-aided theorem proving in Coq, Isabelle/HOL and other

proof assistants made possible the development of formally verified software with growing
complexity at the cost of a reasonable effort. For example, recent achievements in formal
verification of software include the formal verification of the CompCert compiler [Ler09a], of
the seL4 [seL] and mCertiKOS [Cer] operating system kernels and of the FSCQ [CZC+15]
file system.
Therefore, for Verasco, using Coq, the same implementation and proof language as Comp-

Cert, seems natural. We not only use the experience learned from the development of
CompCert: indeed, as a formally verified compiler, CompCert describes formally its input
language. Hence, reusing in Verasco the formally verified front-end of CompCert makes us
able to combine the formal guarantees of Verasco and CompCert in order to enforce the
absence of runtime error all the way down to the assembly code generated by CompCert.
This makes CompCert an essential dependency of our work.

0.3. Contributions and Structure of this Document

In this thesis, we describe the design, implementation and formal verification of Verasco, a
static analyzer based on abstract interpretation entirely written within the Coq proof assis-
tant. Verasco comes with a formal proof of soundness guaranteeing that, if the analyzer does
not warn for any potential runtime error, then the analyzed program will execute without
any runtime error. These runtime errors include arithmetic errors and invalid memory ac-
cesses. Verasco handles most of its input language, C99. It contains many different abstract
domains, to achieve good precision of analysis: a precise memory abstract domain and sev-
eral numerical abstract domains, some of which are relational. These abstract domains are
organized modularly, using interfaces and specifications, so that they can be easily modified
independently of each other.
Verasco is the work of a team, as part of the ANR project Verasco. Most impor-

tantly, Verasco received contributions from Vincent Laporte [Lap15] and his advisors David
Pichardie and Sandrine Blazy for the preliminary implementation and for the memory ab-
stract domain and from Alexis Fouilhé, Sylvain Boulmé, David Monniaux and Michaël
Périn [FMP13, FB14] for the polyhedral abstract domain.
Specifically, this thesis describes the design, implementation and formalization of the

3

Chapter 0. Introduction

abstract iterator of Verasco, and of most of its numerical back-ends. We detail in the
following our contributions:

• We designed modular interfaces between the different components of the analyzer,
with their formal specifications (Chapter 3). In particular, we implemented and proved
correct a communication system between numerical abstract domains, inspired from
that of Astrée.

• We formalized and proved correct a large variety of algorithms and theorems essential
to the soundness of Verasco. The proved theorems go from the arithmetic and “bit
twiddling” properties of integers and floating-point numbers (Chapter 5, Chapter 6
and Chapter 8) to the symbolic reasoning needed to prove correct, among others,
our symbolic abstract domain (Chapter 7). The formalization work also includes
the soundness proof of a specially crafted Hoare logic for the C#minor intermediate
language and its use for the correctness evidence of the abstract iterator of Verasco
(Chapter 4). To the best of our knowledge, some of the methods used to prove
properties of this logic are novel.

• We describe in Section 8.2 an improvement of the usual algorithms for the abstract do-
main of octagons: we give algorithms that keep sparse the representation of difference
bound matrices.

• We give in Chapter 9 several techniques to maintain sharing in data structures used in
a program developed in Coq. This includes a technique for soundly using the physical
equality operator within Coq programs and several techniques for implementing hash-
consing.

This thesis is structured as follows. In Part I, we give an introduction to the context
of this work: Chapter 1 introduces several tools and methods for formal verification, and
Chapter 2 gives an overview of the abstract interpretation methodology for building static
analyzers. In Part II, we describe the design of Verasco as a static analyzer: Chapter 3 de-
scribes its architecture and many design decisions, and Chapter 4 gives a precise description
of the abstract interpreter, which is the module directly in contact with the input program.
In Part III, we describe the multiple numerical abstractions present in Verasco: Chapter 5
explains how we deal with overflow and wraparound behavior of bounded machine arith-
metic, Chapter 6 reports on the implementation of two non-relational abstract domains
(the abstract domain of intervals and the abstract domain of arithmetical congruences),
Chapter 7 depicts an abstract domain of symbolic equalities and Chapter 8 describes the
weakly relational abstract domain of octagons, together with its accompanying linearization
abstract domain. Part IV heads towards conclusion: Chapter 9 describes the methods that
we use or could have used for improving the memory sharing in Verasco’s data structures,
and Chapter 10 concludes.
This document is a more precise and more recent description of Verasco than the de-

scription presented in our previous paper at the POPL conference [JLB+15]. We also refer
the reader to the thesis of Vincent Laporte [Lap15] for a precise description of the state
abstract domain, which is not presented here. The Coq code of Verasco can be downloaded
and browsed online at http://compcert.inria.fr/verasco/. In the following table, we give
an informative correspondence between sections and chapters of this thesis and files of the
development:

4

http://compcert.inria.fr/verasco/

0.3. Contributions and Structure of this Document

Files in the development Description in this thesis
verasco/lib/AdomLib.v Section 3.1
verasco/AbMemSignatureCsharpminor.v Section 3.2.1
verasco/AbMachineEnv.v Section 3.2.2
verasco/AbIdealEnv.v
verasco/IdealExpr.v

Section 3.2.3

verasco/AbIdealEnv.v
verasco/AbIdealEnvProduct.v

Section 3.3

cfrontend/Csharpminor.v Section 4.1
verasco/CsharpminorLogic.v Section 4.2
verasco/CsharpminorIter.v
verasco/CsharpminorIterproof.v

Section 4.3

verasco/IdealEnvToMachineEnv.v Chapter 5
verasco/AbIdealNonrel.v
verasco/IdealBoxDomain.v

Section 6.1

verasco/FloatIntervals.v
verasco/FloatIntervalsForward.v
verasco/FloatIntervalsBackward.v
verasco/ZIntervals.v
verasco/IdealIntervals.v
verasco/IdealIntervalsNonrel.v

Section 6.2

verasco/Zcongruences_defs.v
verasco/Zcongruences.v

Section 6.3

verasco/AbVarExpEq.v Chapter 7
verasco/AbLinearize.v
verasco/LinearQuery.v

Section 8.1

verasco/Octagons.v Section 8.3
verasco/lib/ShareTree.v Section 9.1

5

I
Context

Chapter 1
Introduction to Functional Formal
Verification of Software

In order to improve the confidence in software, many different technologies have been de-
veloped to write programs that meet their specifications. In particular, formal verification
methods aim at using formal arguments based on logic and mathematics with the help of
computers for guaranteeing the correspondence between a program and its specification. In
this chapter, we give a quick overview of some of these techniques. In particular, we empha-
size the concepts and methods we use throughout the thesis: operational semantics, Hoare
logic, and the Coq proof assistant. We focus, in this chapter, on techniques targeted at
proving precise functional specifications: in Chapter 2, we describe abstract interpretation,
which usually proves less precise specifications with less user interaction.

1.1. Formalizing Proofs of Programs

Formal verification methods are based on strong mathematical foundations. As a conse-
quence, it is necessary to view programs as well-defined mathematical objects. We give an
example here with the Toy programming language. Then, we give an overview of different
formal verification techniques and tools.

1.1.1. The Toy Language and its Operational Semantics

This introduction is based on a simplistic programming language, called the Toy language.
We take a formal point of view for the description of Toy: Toy is seen as a mathematical
object, so that we will be able to write theorems and proofs on this language.
The syntax of Toy is described in Figure 1.1. It depends on a finite set V of program

variables. The expressions of this programming language are built using program variables,
standard arithmetical operators and integer constants. A statement (or instruction) of this
programming language is either an assignment, a sequence of two statements (to be executed
one after the other) or a while loop that repeats its body until the given expression evaluates
to 0. Finally, in Toy, a program using a variable x ∈ V as input is defined by a statement,
constituting its body, followed by the return construct producing the result value of the
program.

9

Chapter 1. Introduction to Functional Formal Verification of Software

Expressions:
e ::= x, y, z ∈ V variables
| . . .− 2,−1, 0, 1, 2 . . . integer constants
| −e | e+ e | e× e | e÷ e arithmetic operations

Statements:
s ::= x := e assignment
| s; s sequence
| while e do s done while loop

Programs:
p ::= x⇒ s; return e

Figure 1.1: Syntax of Toy

As an example, the following Toy program, when given a non-negative integer as input,
returns the factorial of this number:

x⇒ r := 1;

while x do

r := x× r;

x := x+−1
done;

return r

The next steps towards defining Toy as a mathematical object is to give meanings to Toy
programs, that are, for now, bare syntax trees. Such a definition is called a semantics of
the Toy language. There are different kinds of semantics for programming languages: we
describe here an operational semantics for Toy, in small-step style. This kind of semantics
describes the behavior of Toy programs closely to the actual behavior of a machine executing
a Toy program.
We describe the behavior of the program as a sequence of machine states. For Toy, a

machine state is given by a pair ⟨ρ, l⟩ of an environment ρ : V → Z giving integer values to
variables, and of a list l of statements that remain to be executed. The first component, the
environment ρ, represents the memory of the program: it stores the values of the variables,
and is modified when a variable is assigned. The second component, l, represents at which
position the machine is in the code. This component stores literally the pieces of the program
that remain to be executed before its end.
The semantics of Toy statements is given by an initial state, a transition relation between

states describing the steps of computations, written ⟨·, ·⟩ → ⟨·, ·⟩, and a final state from which
we can extract the result of the execution of the program. Intuitively, this corresponds to
giving a formal description of the “physical” behavior of a computer executing the program.
Consider the Toy program x ⇒ s; return e, for some arbitrary statement s and expres-

sion e. When given the value v as input, we define the initial state of this program as
being the state ⟨ρ0x←v, s :: nil⟩, where ρ0x←v is the environment such that ρ0x←v(x) = v and

10

1.1. Formalizing Proofs of Programs

x ∈ V
ρ ⊢ x ⇓ ρ(x)

n ∈ Z
ρ ⊢ n ⇓ n

ρ ⊢ e ⇓ n

ρ ⊢ −e ⇓ −n
ρ ⊢ e1 ⇓ n1 ρ ⊢ e2 ⇓ n2

ρ ⊢ e1 + e2 ⇓ n1 + n2

ρ ⊢ e1 ⇓ n1 ρ ⊢ e2 ⇓ n2

ρ ⊢ e1 × e2 ⇓ n1n2

ρ ⊢ e1 ⇓ n1 ρ ⊢ e2 ⇓ n2 n2 ̸= 0

ρ ⊢ e1 ÷ e2 ⇓ ⌊n1/n2⌋

Figure 1.2: Big-step operational semantics for Toy expressions

ρ0x←v(y) = 0 if y ̸= x; and s :: nil is the list of statements containing the statement s only.
The state transition relation of the language is defined by giving rules under which a

transition may happen. For example, the rule for the sequence statement is the following:

⟨ρ, (s1; s2) :: k⟩ → ⟨ρ, s1 :: s2 :: k⟩ (1.1)

That is, if we have to execute the sequence of two statements s1 and s2, followed by a list
k of other statements, we just queue the execution of s1 followed by s2 and k.
The rule for assignment depends on the semantics of Toy expressions. We write ρ ⊢ e ⇓ v

to denote the fact that, in environment ρ, the expression e evaluates to the value v. The
definition of this judgment is given in Figure 1.2. It follows the structure of the syntax
tree of the expression: this method for defining the semantics of expressions is said to be in
big-step style. We do not give more detail on this definition, the understanding of which is
not essential for the following. The rule for the assignment follows:

ρ ⊢ e ⇓ v

⟨ρ, (x := e) :: k⟩ → ⟨ρx←v, k⟩
(1.2)

where ρx←v denote the environment ρ modified with the new value v for variable x. The
rule is stated as an inference rule: if the condition stated above the vertical line is true,
then we can deduce the property under the vertical line. This rule says that executing an
assignment amounts to evaluating the expression and modifying the environment with a new
binding for the assigned variable. The assignment is discarded from the list of statements
to be executed.
There are two rules for while, depending on whether the expression evaluates to 0 or not.

The first one follows:
ρ ⊢ e ⇓ 0

⟨ρ, (while e do s done) :: k⟩ → ⟨ρ, k⟩
(1.3)

That is, if e evaluates to 0, the loop can be discarded and the environment stays unchanged.
The other rule follows:

ρ ⊢ e ⇓ v v ̸= 0

⟨ρ, (while e do s done) :: k⟩ → ⟨ρ, s :: (while e do s done) :: k⟩
(1.4)

That is, if the expression evaluates to a non-zero integer, we place the body of the loop as
the next statement to be executed, followed by another copy of the loop, which will take
care of the following iterations once s will be finished. It is worth noting that the body of
the loop can modify the environment, so that the expression will not necessarily evaluate
to the same value in the following iterations.

11

Chapter 1. Introduction to Functional Formal Verification of Software

It remains to describe the final states of Toy. They are of the form ⟨ρ, nil⟩, where nil is
the empty list.
Putting all the pieces together, we can say that a program x⇒ s; return e returns value

vo when given input vi if there exists a sequence of states S0, . . . , Sn such that the two
following properties hold:{

⟨ρ0x←vi , s :: nil⟩ = S0 → S1 → . . . → Sn−1 → Sn = ⟨ρ, nil⟩
ρ ⊢ e ⇓ vo

(1.5)

Toy programs can have runtime errors. For instance, when evaluating a division in an
expression e, if the divisor evaluates to 0, there is no value v such that ρ ⊢ e ⇓ v. As a
consequence, if the expression e appears in the next statement to be executed, there is no
following state defined by the transition relation ⟨·, ·⟩ → ⟨·, ·⟩. In this situation, we say
that we are in an erroneous or stuck state. In a practical implementation of Toy, this could
correspond to an undefined behavior (i.e., anything can happen), or to a runtime exception
(the implementation stops the execution of the programs and shows an error message). In
any case, a programmer wants to avoid these erroneous states.
A fundamental property of this semantics for Toy is that a given program can return

at most one value: either it does not terminate, or it stops in an erroneous state, or it
does terminate, and in this latter case there is only one path to a final state for a given
input value. This property is called determinism, and is not valid for every programming
language. For example, it is well-known [Kre15, ISO99] that the C language does not fully
specify the evaluation order of expressions, making it non-deterministic: an implementation
of C can choose among several orders for evaluating expressions, leading to potentially
different results.
Of course, Toy is an over-simplified language compared to real-life languages such as C.

Many features are missing, such as functions, complex data-structures or even if-then-
else statements. We develop in Section 4.1 the syntax and operational semantics of a
much more realistic language, the C#minor intermediate language. We refer the reader
to [BDL06, Kre15] for formal semantics of C, which is even more realistic as a language.

1.1.2. Reasoning on Toy Programs

The operational semantics of Toy describes precisely the behavior of programs. It has the
right level of detail to prove correct some programming tools, such as compilers [Ler06].
However, using this formalism directly for proving properties of programs is not convenient.
To ease this task, formal verification scientists often design another kind of semantics for
their programming language. These so-called axiomatic semantics are well-adapted for
reasoning, but describe the meaning of programs in a way that is further to the actual
“physical” behavior of the program, when compared to operational semantics. In order to
fill this gap, which can lead to a loss of confidence in the proofs of programs, axiomatic
semantics often come with a soundness proof with respect to an operational semantics.
Informally, this proof guarantees that any property proved on programs using the axiomatic
semantics is actually valid when interpreted in the context of the operational semantics.
Soundness proofs for Hoare logic are technical: we omit them in this introductory chapter,
but refer the reader to Section 4.2.5 for the soundness proof of such a logic.
We give here an example of an axiomatic semantics for Toy, in the style of Hoare [Hoa69].

The idea is to give to each statement of the program a pre-condition and a post-condition.
The combination of a pre-condition P , a program statement s and a post-condition Q forms
a Hoare triple, noted {P} s {Q}. Both the pre-condition P and the post-condition Q are

12

1.1. Formalizing Proofs of Programs

logical properties over the values of the variables of the program. The intuitive meaning of
the Hoare triple {P} s {Q} is that if P holds when the execution of s starts, then s will not
produce any runtime error (i.e., in Toy, a division by 0), and Q will hold when s terminates,
if it does.
Similarly to the transition relation of the small-step operational semantics, we give a set

of rules to build Hoare triples. As an example, here is the rule that lets us build a Hoare
triple for a sequence of two statements:

{P} s1 {Q} {Q} s2 {R}
{P} s1; s2 {R}

(1.6)

Recall that this rule is given in the style of an inference rule: in order to deduce what is
under the line, one has to prove what is above the line. This rule says that, to prove correct
the Hoare triple {P} s1; s2 {R} for the sequence of the two statements s1 and s2, we have
to provide an intermediate predicate Q that will be valid in between the execution of s1
and s2. Then, we will have to prove that the two corresponding Hoare triples for s1 and s2
are also valid.
Another important rule is the consequence rule. It says that if we were able to prove

a Hoare triple, then it is always possible to weaken the post-condition and strengthen the
pre-condition: strengthening the pre-condition correspond to considering fewer program
executions, and weakening the post-condition correspond to lowering our requirements on
the final state of the execution of the statement. Formally, the consequence rule is stated
as follows:

P ′ ⇒ P {P} s {Q} Q⇒ Q′

{P ′} s {Q′}
(1.7)

The pre-condition for an assignment should not only contain the necessary restrictions
to validate the post-condition, but also a condition ensuring the expression being assigned
evaluates without errors (such as division by 0). To this end, we introduce the notation e⇓
to denote the fact that, in the current environment, e evaluates without errors, i.e., does
not divide by zero. Then, the rule for assignment follows:

{e⇓ ∧ P [x← e]} x := e {P} (1.8)

In logic, ∧ is the notation for “and”: the logical property P ∧ Q holds whenever P holds
and Q holds. Moreover, the notation P [x ← e] denotes the property P where all the
occurrences of x have been replaced by e. The rule (1.8) states that, in order to prove
that a post-condition P holds after the execution of an assignment, we have first to assume
that the expression involved will evaluate correctly. Second, we have to assume something
to deduce P , but P may contain references to the variable x that may not have the same
value before the assignment. Therefore, we replace all the occurrences of x in P with the
expression it is assigned to. It can seem counter-intuitive that we have to do the substitution
in the post-condition in order to find the pre-condition. There exists another formulation of
this rule using a substitution in the pre-condition, but the deduced post-condition is more
complex and involves an existential quantifier.
The last rule of our Hoare logic for Toy is the rule for while loops. The usual way

of reasoning on loops is to exhibit an invariant, a logical property that will hold at the
beginning of any iteration of the loop. We have to prove that the invariant is preserved by
the body of the loop: that is, if it is valid before the execution of the loop body and the loop
condition evaluates to a non-zero value, then it should hold at the end of the execution of
the body. Moreover, the invariant should guarantee that the condition of the loop does not

13

Chapter 1. Introduction to Functional Formal Verification of Software

have a division by 0. Given all these hypotheses, we can deduce a Hoare triple for the loop,
giving the invariant as a pre-condition (the invariant should hold for the first iteration), and
the invariant as a post-condition, together with the fact that the loop condition evaluates
to 0. Formally, this can be written as follows:

I ⇒ e⇓ {I ∧ e ̸= 0} s {I}
{I} while e do s done {I ∧ e = 0}

(1.9)

It is worth noting that this rule does not guarantee that the loop terminates: our axiomatic
semantic for Toy does not ensure termination of programs. We say that such program
correctness proofs are partial, in contrary to correctness proofs guaranteeing termination,
which are called total correctness proofs. Our rule for the while loop could be adapted to
total correctness, but we do not need total correctness in the context of this thesis.
Finally, suppose we want to prove correct a program x ⇒ s; return e. More precisely,

suppose we want to prove that, if given the input v, the program either does not terminate
or returns a value verifying the logical predicate Pv. Then, the only thing we have to prove
is the following Hoare triple for the statement s:

{x = v} s {Pv(e)} (1.10)

The kind of logical predicate that can be used as pre- and post-conditions depend on
the context. The Hoare logic we presented is well adapted for languages with variables and
possibly arrays, but is not convenient for languages with pointers or references. Often, for
pointer-based programs, a variant of separation logic [Rey02] is used. Separation logic gives
a formalism for proving properties about ownership and organization of memory, which is
useful when proving correct realistic programs.

Hoare logic at work!

We have just given the rules of our Hoare logic for Toy, but they may seem abstract. We
give here an example of application of this logic. Namely, we are going to prove that the
program for factorial given earlier actually computes the factorial of its input. Let n be
such an input, with 0 ≤ n. It suffices to prove valid the following Hoare triple:

{x = n}
r := 1;

while x do

r := x× r;

x := x+−1
done

{r = n! }

The body of the program is the sequence of the assignment r = 1 and of the loop.
Therefore, we have to apply the rule (1.6), and to exhibit an intermediate predicate that is
valid in between. A good candidate is x = n ∧ r = 1. Then, we have to prove the following

14

1.1. Formalizing Proofs of Programs

two Hoare triples:

{x = n ∧ r = 1}
while x do

{x = n} r := 1 {x = n ∧ r = 1} r := x× r;

x := x+−1
done

{r = n! }

For the first one, we are tempted to use the rule for assignments (1.8), but the precondition
do not have the required form: it only let us prove the following Hoare triple:

{1⇓ ∧ x = n ∧ 1 = 1} r := 1 {x = n ∧ r = 1}

We can easily see, however, that x = n implies 1⇓ ∧ x = n ∧ 1 = 1. As a result, we can
apply successively the assignment rule (1.8) and the consequence rule (1.7) to deduce the
desired Hoare triple.
Similarly, in order to prove the Hoare triple of the loop, we use successively the rule for

loops (1.9) and the consequence rule (1.7). We choose as invariant “0 ≤ x ∧ r = n!
x!”. It

remains to prove the following lemmas:

(x = n ∧ r = 1) =⇒ 0 ≤ x ∧ r =
n!

x!
(1.11)(

0 ≤ x ∧ r =
n!

x!
∧ x = 0

)
=⇒ r = n! (1.12)(

0 ≤ x ∧ r =
n!

x!

)
=⇒ x⇓ (1.13){

0 ≤ x ∧ r =
n!

x!
∧ x ̸= 0

}
r := x× r; x := x+−1

{
0 ≤ x ∧ r =

n!

x!

}
(1.14)

The first two properties are the premises of the consequence rule (1.7) and can be proved
using basic maths. The last two are the premises of the rule for loops (1.9). The proof of
(1.13) is trivial. The proof of (1.14) is also easy: it involves applying the consequence rule
(1.7), the sequence rule (1.6) and the assignment rule (1.8) twice.

1.1.3. Weakest Preconditions and Deductive Verification

As can be seen in the example of the factorial program, even proofs of simple programs
involve many intermediate steps. Hopefully, many of these steps can be automated, so that
much less user interaction is needed.
The first step towards automation is to notice that, for any given post-condition and non-

looping statement, it is easy to build the weakest pre-condition. The weakest pre-condition
is a valid pre-condition for a given statement and post-condition that is implied by all
other valid pre-condition. For example, in our Hoare logic for Toy, the computation of the
weakest pre-condition for assignments is a direct application of (1.8). For computing the
weakest pre-condition of a sequence s1; s2, we first compute for the weakest pre-condition
for statement s2. Then, following (1.6), we use this pre-condition as a post-condition for
s1 and compute the weakest pre-condition of s1. This latter pre-condition is the weakest
pre-condition of s1; s2.

15

Chapter 1. Introduction to Functional Formal Verification of Software

Continuing the example of the factorial program, the following Hoare triple for the loop
body can be automatically deduced by this algorithm:{

0 ≤ x+−1 ∧ x× r =
n!

(x+−1)!

}
r := x× r; x := x+−1

{
0 ≤ x ∧ r =

n!

x!

}
(1.15)

In order to prove (1.14) by using the consequence rule (1.7), it remains to prove the simple
implication: (

0 ≤ x ∧ r =
n!

x!
∧ x ̸= 0

)
⇒
(
0 ≤ x+−1 ∧ x× r =

n!

(x+−1)!

)
(1.16)

Therefore, in order to prove correct a Hoare triple for a statement that does not contain
any loop, we can automatically compute the weakest pre-condition for the given post-
condition and statement. It remains to prove that the desired pre-condition implies the
computed weakest pre-condition. This can be done manually, but, in practice, most of
these so called verification conditions can be proved by automated theorem provers, which
are able to do basic but tedious logical reasoning efficiently.
We have just described the basic operating principle of deductive verification tools, which

are one of the popular approaches to software verification. In this approach, the user gives
pre- and post-conditions to pieces of program, such as functions or loop bodies, and the tool
tries to prove them using some sort of weakest pre-condition computation and a theorem
prover. This category of tools includes, for example, Why3 [Why], FramaC-WP [Fwp],
Boogie [Boo] and many others. In order to discharge the generated verification conditions,
they use many different automated theorem provers, such as Alt-Ergo [Alt], Z3 [Z3] or
CVC4 [CVC]. In case these automated provers cannot prove automatically a verification
condition, some tools allow the user to fall-back to a fully manual proof assistant such as
Coq [Coqa] or Isabelle [Isa].
A common problem with deductive verification is the fact that weakest precondition

computation does not usually handle loops. Indeed, an invariant has to be computed in
a way or another, and this process cannot be automated in all cases. That is why many
of these deductive verification tools require the user to give the loop invariants explicitly.
Others use heuristic algorithms to infer loop invariants. As we will see in Chapter 2, a
generic method for inferring loop invariants is provided by abstract interpretation.

1.1.4. Model Checking

Model checking is another software verification technique. We do not use this method at all
in the context of this thesis. For the sake of completeness, we give here a rough description
of this active research domain.
The idea of model checking is to explore systematically the set of states the program can

reach during its execution, and to check that all the paths that may be taken by the system
meet the specification. The possible specifications are potentially not limited to a set of
erroneous states to exclude: they are usually expressed in temporal logic, enabling the user
to express properties over the whole program trace.
A common problem with model checking is that the set of states can be large and po-

tentially infinite, thus impractical to explore. Several solutions exist to circumvent this
problem:

• Instead of verifying the actual program that will be executed, the users of model
checking often use a model of the program. Such a model is described in an idealized

16

1.1. Formalizing Proofs of Programs

formalism (such as Büchi automata, Petri nets or even over-simplified programming
languages). Typically, the behaviors of such models are much easier to explore sys-
tematically than realistic programs which may contain many implementation details.

• The model checking algorithms need not explicitly explore each state one by one.
Instead, designers of model checking tools have developed efficient algorithms using
symbolic methods. Schematically, they use logical formulae to represent sets of states.
To this end, they typically depend on binary decision diagrams, Boolean satisfiability
solvers or satisfiability modulo theory solvers.

• Model checking tools may be used to explore only a subset of the set of reachable
states. That is, they will enumerate all the states reachable after k computing steps,
where k is a parameter of the tool. By doing so, the tool becomes unsound: it may
miss a bug in the software, but it is still useful in improving the confidence in the
software.

Compared to the other functional verification tools described in this chapter, model checking
has advantages: once the model and the specification are described in the right formalism,
the tool is mostly automatic. Moreover, when such a tool finds a bug, it also provides
an example of an erroneous program execution, which can be useful in debugging. These
two advantages make model checking popular in industry. However, it suffers from seri-
ous scalability problems that make difficult the use of model checking for large realistic
programs.

1.1.5. Dependent Type Systems
Type systems are a popular method to improve reliability and ease development of software.
In this methodology, a set of rules lets a type-checker (which is usually a component of the
compiler) assign a type to each value to be computed. A type system soundness theorem
guarantees that the types computed at compile time are fulfilled at runtime.
Example types are int or bool for integer values or Boolean values. A more involved

type would be int -> bool for functions taking an integer and returning a Boolean. Lastly,
some type systems allow polymorphism: a value may have, at the same time, all the types
specified by a pattern. For example, a function of type ∀ a, a -> a has all the types A -> A
for any type A.
There exists a huge variety of type systems, letting the user express in the types more or

less precise information about the values computed at runtime. Some of them are particu-
larly easy to use: in the ML type system, all the types can be inferred by the type-checker.
However, these type systems are not expressive enough to give functional specifications we
need in formal verification of software.
In order to do formal verification of software, we need a particular feature of type systems:

we need to be able to speak directly about the values of the programs in the types. For
example, in these so-called dependent type systems, the type of the value returned by a
function can give strong properties on this return value, depending on the values of the
parameters. The type of a function computing the factorial of its parameter could entail
the fact that it returns indeed the factorial of its parameter, or that this result is always
positive. For example, the following F* factorial function requires that its argument is
non-negative and ensures that it always terminates and returns a strictly positive integer:
val factorial: x:int{x>=0} -> Tot (y:int{y>=1})
let rec factorial n =

if n = 0 then 1
else n * factorial (n - 1)

17

Chapter 1. Introduction to Functional Formal Verification of Software

Because dependent type systems are very expressive, they require the user to give com-
plex correctness arguments for proving that some value has some type. For this reason,
dependently typed languages most often come with tools for proving logical properties. Tra-
ditionally, the Curry-Howard correspondence, which lets us see logical properties as types
and programs as proofs of these properties, is used as such a tool. As a consequence, it is
difficult to see the frontier between a programming language using dependent types and a
proof assistant using programs as proof. Examples of languages that support specifications
using dependent types include F* [F*], Idris [Idr], Agda [Agd] and Coq [Coqa].

1.2. The Coq Proof Assistant

In this section, we give a quick introduction to the Coq proof assistant, which implements
the language in which Verasco is programmed and formally verified. This introduction is
designed to be a starting point to the understanding of the description of Verasco in this
thesis. However, a complete introduction to Coq is far beyond the scope of this document.
We refer the reader to excellent books on the subject [BC04, Chl13, PCG+15] and to the
Coq reference manual [Coqb] for the most technical aspects.

1.2.1. Coq as a Programming Language

Coq implements a well-studied programming language called the calculus of inductive con-
structions. The calculus of inductive constructions can be seen as a simple functional
programming language with a very involved type system.
Being basic, this programming language lacks some important features of usual program-

ming languages: most importantly, every term in Coq (that is, every expression, function
or program) is pure. That is, in Coq, one cannot modify the value of variables. Moreover,
the type system of Coq ensures that every program will eventually terminate: if one wants
to write in Coq a complex algorithm, she will need to give a proof of termination for this
algorithm. These major restrictions over programs written in Coq can make the work of
the programmer much more difficult. But this is a major advantage for reasoning about
programs: indeed, because all terms are pure and terminate, they can be thought of as
mathematical objects. A Coq function can really be thought as a mathematical function
(without worrying about whether its execution can modify e.g., global variables). As in
mathematics or logic, a variable can really be thought as an unspecified object (without
worrying about its possible change with time).
An interesting feature of the type system of Coq is that types are terms. This means that

one may write a program that takes types as parameters or return types, and this program
is written using the same constructs as usual programs. In particular, this means that types
themselves have a type: this type is Type.
As in any typed functional programming language, Coq has a type for functions. For

instance, nat -> bool is the type for functions from natural integers to Booleans. What is
particular to dependently typed programming languages such as Coq, is that the type of
function can be dependent. That is, the return type of a function can depend on the value
of the parameter. As an artificial example, a function can return a natural integer when its
Boolean parameter is true and a Boolean when it is false. For reasons that will become clear
later, the type of such a function would be written ∀ x:bool, if x then nat else bool.
That is, if a function takes a parameter x of type T and returns a value of type U(x), then
the type of the function is noted ∀ x:T, U(x). In particular, in the non-dependent case,
T -> U is simply a notation for ∀ x:T, U. Often, the type of the parameter x can be inferred

18

1.2. The Coq Proof Assistant

from the context, and we can omit it in the notation: ∀ x, U(x).
Dependent types for functions may seem artificial. For now, let us note that this con-

struction unifies the concepts of function and of polymorphism. Indeed, consider the OCaml
polymorphic function type 'a -> 'a list: this is the type of all functions taking an object
of any type 'a and returning a list of values of type 'a. In Coq, this type can be written
∀ T:Type, T -> list T: that is, a polymorphic function, in Coq, is nothing more than a
curried function taking the quantified type as parameter.

1.2.2. The Curry-Howard Correspondence: Coq as a Proof
Assistant

The Curry-Howard correspondence lets us use the Coq programming language as a powerful
tool to write logical proofs over mathematical objects and programs. The idea is to interpret
logical propositions as types and proofs of these propositions as programs having these types.
More precisely, let us examine what would be the proof of an implication P ⇒ Q: we can

see such a proof as an object that, when given a proof of P , returns a proof of Q; this is
the actual meaning of an implication. Seeing this interpretation from a computer scientist
point of view, this amounts to telling that a proof of P ⇒ Q is a function taking a proof of
P as parameter and returning a proof of Q: such a proof is a program of type P -> Q.
Similarly, consider a proof of the property ∀x : T, P (x), for a type T and a predicate P

over values of type T . The meaning of the universal quantifier is that such a proof is an
object able to build a proof of P (x) when given any x of type T . That is, from a computer
scientist point of view, such a proof is a function taking an x of type T as parameter and
returning a proof of P (x). This means that the return type of the function representing
the proof depends on the value of the parameter: the type of this function is the dependent
function type ∀ x:T, P(x).
This analogy does not stop here: all the usual ways of building logical propositions have an

interpretation in terms of types and their proofs in terms of programs of the corresponding
type. The logical and of two proposition P and Q, noted P /\ Q in Coq can be interpreted
as the type of pairs of the proofs of the two propositions; the logical or of P and Q, noted
P \/ Q in Coq, can be interpreted as a sum type, etc...
Therefore, in Coq, a proposition is a type, and a proof of a proposition is a program with

this type. Yet, for several technical reasons, types and propositions are not exactly alike:
to differentiate them, we use the type Type for types and the type Prop for propositions,
but they behave in similar ways. In particular, we can actually prove properties by writing
programs of the right types, although, in practice, these programs can be large and tedious
to write: hence, we instead use tactics that automatically generate pieces of programs
corresponding to certain well-known reasoning schemes.
The benefit of using the same formalism for programming and theorem proving is that

we can mix proofs and programs. Namely, we can mention directly the programs in logical
propositions as if they were objects of the logic. We can also manipulate logical properties
in programs. For example, we can define a function taking as parameter the proof of a
property over another parameter: this is the responsibility of the caller to provide a proof
that the parameter verifies the property. This way, we are sure that the function will always
be called with valid values for its parameters.

1.2.3. Inductive and Coinductive Types in Coq

Inductive types are a generalization of algebraic data types such as those present in OCaml:
they are defined by a set of constructors that let one build elements of the type; then, we

19

Chapter 1. Introduction to Functional Formal Verification of Software

can use pattern matching to operate on values of the type.
As in OCaml and in many functional programming languages, inductive types can be

used to define data structures: in the standard library of Coq, in CompCert or in Flocq,
inductive types are used to define Booleans, pairs, lists, various sorts of integers, floating-
point numbers, syntax trees... To define such an inductive type, one has to give the types
of every constructors as curried functions1. As an example, in order to define the type of
statements of Toy as described in Figure 1.1, assuming that the types var and expr of Toy
variables and expressions were defined earlier, we would write the following inductive type
definition:

Inductive stmt: Type :=
| Assign : var -> expr -> stmt
| Sequence : stmt -> stmt -> stmt
| While : expr -> stmt -> stmt

That is, we define the inductive type stmt, with type Type, having 3 constructors, Assign,
Sequence and While. The type of the constructor representing Toy assignments, Assign,
is var -> expr -> stmt, meaning it should contain two values: a Toy variable and a Toy
expression. Like algebraic data types in OCaml, inductive types can have parameters. For
example, we could make the definition of stmt generic over the type of Toy variables:

Inductive stmt (var:Type): Type :=
| Assign : var -> expr var -> stmt var
| Sequence : stmt var -> stmt var -> stmt var
| While : expr -> stmt var -> stmt var

Because, as we have seen in Section 1.2.2, types and propositions behave similarly, ar-
guments of constructors can also be proofs. A typical example is the sig type from the
standard library of Coq:

Inductive sig (A : Type) (P : A -> Prop) : Type :=
| exist : ∀ (x : A), P x -> sig A P

This type is parameterized by A, a type, and P, a predicate over elements of A. It has a single
constructor, exist. This constructor has two parameters: the first one, x, is an element of
A, and the second one is a proof that this element meets P. That is, from a programmatic
point of view, sig A P corresponds to the type of all elements of A satisfying the property P.
We call such type a subset type, and usually we use the notation {x : A | P x}, borrowed
from set theory. For example, the type {x : nat | x > 0} is the type of strictly positive
natural integers.
When developing formally verified software, subset types are often useful: they help us

maintain invariants over our data structures, by construction, instead of proving them after-
wards. That is, instead of manipulating values of type A and then proving that the invariant
P is maintained, we can, from the beginning, manipulate values of type {x : A | P x}.
Inductive types are useful to define data structures, but not only. Because of the Curry-

Howard correspondence, they can also be used to define logical properties in Prop. In fact,
apart from implication, universal quantification and negation, all the logical connectives in
Coq are defined using inductive definitions in Prop. This include and, noted /\, or, noted \/,
equality, and existential quantification. For example, we give in the following the definitions
of and, or and of the existential quantifier as inductive types, as they appear in the Coq
standard library:

1Not any type for a constructor is allowed: some technical syntactical restrictions are enforced by the Coq
type-checker, but this is out of the scope of this overview.

20

1.2. The Coq Proof Assistant

Inductive and (A B : Prop) : Prop :=
| conj : A -> B -> and A B.

Inductive or (A B : Prop) : Prop :=
| or_introl : A -> or A B
| or_intror : B -> or A B.

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : ∀ x : A, P x -> ex A P.

In Verasco, we use inductive definitions in Prop for defining some predicates. They are
convenient to use when the predicate is defined by a set of inference rules, which is partic-
ularly frequent when defining semantics of programming languages. For example, in order
to define the small-step operational semantics of Toy used in Section 1.1.1, we would define
an inductive predicate step taking as parameter the initial and final states or a step, as
follows:

Inductive step : (env * list stmt) -> (env * list stmt) -> Prop :=
| step_Assign: ∀ ρ e v k, eval_expr ρ e v ->

step (ρ, (Assign x e)::k)
(update_env ρ x v, k)

| step_Sequence: ∀ ρ s1 s2 k,
step (ρ, (Sequence s1 s2)::k)

(ρ, s1::s2::k)
| step_While_0: ∀ ρ e s k, eval_expr ρ e 0 ->

step (ρ, (While e s)::k)
(ρ, k)

| step_While_v: ∀ ρ e v s k, eval_expr ρ e v -> v <> 0 ->
step (ρ, (While e s)::k)

(ρ, s::(While e s)::k)

We assume that eval_expr, representing the semantics of expressions and update_env, per-
forming updates in environments have already been defined. The constructor step_Assign
corresponds to rule (1.2), step_Sequence to rule (1.1), step_While_0 to rule (1.3) and
step_While_v to rule (1.4).

Coinductive types

When we use inductive types, we implicitly assume that the data structure or proof that
we are defining is finite. It is impossible, for example, to define a list with infinitely many
elements (also known as a stream). For this reason, Coq lets us write recursive function
definitions, as long as one parameter of the function is an inductive value that strictly
decreases at each call: such definitions have no risk to break the property that every Coq
program terminates.
There are, however, situations where one would like to build infinite data structures. The

typical example is streams, which are infinite lists. These infinite data structures are called
coinductive types. Values of coinductive types can be defined by calling constructors as for
inductive types, but the parameters of the constructors can mention the coinductive value
being currently built. For example, one can build the stream S containing only ones by
saying that S = 1 :: S. The constructor :: is called with, as second parameter, the stream
S being currently defined.
Coinductive types can also be used to define logical predicates: for example, coinductively

defined predicates are used, in Verasco, for defining the axiomatic semantics of the C#minor
language in Section 4.2. Such definitions correspond to the usual definition of coinductively
defined predicates.

21

Chapter 1. Introduction to Functional Formal Verification of Software

1.2.4. Extracting OCaml Programs from Coq Terms
Running Coq programs can be done directly inside Coq, using Coq’s own evaluation mech-
anisms. However, it may be useful to make formally verified code written in Coq cooperate
with arbitrary non-verified code written in another, more convenient language. To this end,
we use the so-called extraction feature of Coq. Extraction transforms a Coq program into
OCaml code, so that it can be used in the context of a larger OCaml program.
One of the reasons for the separation of Prop and Type is that the extraction mechanism

is able to erase from a Coq term all the uses of Prop in order to keep only its computational
contents. Indeed, as proofs are programs, they can actually compute things, even though
we are generally not interested in the result. This is a common problem when executing
programs directly inside Coq: it may spend a lot of time in proofs computing things we are
not interested in. Extraction lets us use proofs in programs without worrying about the
time spent computing in proofs.

Using fuel for avoiding termination proofs

As we explained, every program in Coq terminates. Even if this is a nice property for
reasoning, it may be inconvenient when programming. Indeed, the proof of termination of
certain algorithms can be tedious. For example, the termination of fixpoint computation
with widening can be complex to prove in the case of complex abstract domain combinations.
Moreover, termination is not actually important for the soundness of Verasco: if the analysis
of some program does not terminate, we do not get any result, including a wrong one.
A solution to this problem is to use fuel: we parameterize the whole program with an

integer fuel parameter. When we program an algorithm of which we do not want to prove
the termination, we force the algorithm to terminate after fuel steps and return a dummy
result if fuel was not large enough to get a meaningful result. This makes it obviously
terminating from the point of view of Coq. We prove that the analyzer is correct for any
value of fuel.
For example, assume that we want to define a function searching for an integer for which

a given function from natural integers to Booleans returns true. Further assume that we
have good reasons to think that there exists such an integer, but we do not want to prove
this formally, and we can afford the risk of a non-terminating search in the case such integer
would not exist. The search function iterates over the natural integers until finding such
an integer, by using a fuel parameter in order to convince the termination checker of Coq
that this search is terminating. In the event we exhaust the fuel, the function returns None,
and otherwise Some x where x is the integer found by the function. Then, we prove that the
returned integer is indeed a value with the desired property for any value of the fuel:
Definition find_true (fuel:nat) (f:nat -> bool) : option nat :=

let fix aux fuel x0 :=
if f x0 then Some x0
else match fuel with

| O => None
| S fuel => aux fuel (x0+1)
end

in aux fuel 0.

Lemma find_true_correct:
∀ fuel f res, find_true fuel f = Some res -> f res = true.

Proof. [...] Qed.

In order to feed the fuel parameter, we have two solutions: the first possibility is to use a
very large integer that would never be exhausted in reasonable time. This cannot be done

22

1.3. Other Formal Verification Projects

reasonably using fuels in nat, because of the Peano encoding of this type, but this can easily
be achieved by using, e.g., the positive type of binary encoded strictly positive integers.
The other solution we use in Verasco is leave the whole program and its correctness

theorem parameterized by the fuel. When it comes to execute the program, we give an
“infinite natural integer” defined by the OCaml definition let rec fuel = S fuel. When
running the analyzer, either it does not terminate, and it does not return a wrong result,
or it does terminate and return a result. In the latter case, we know that the program has
traversed only a finite portion of fuel, and hence, there exists another finite natural integer
that would have made the analyzer return the same result. Therefore, the value returned
by the analyzer is correct because the correction theorem is proven for any value of fuel.

1.2.5. Axioms

Proving theorems using programs with the Curry-Howard correspondence in the calculus of
inductive constructions is a powerful method. However, in order to use the real numbers of
the Coq standard library or just for convenience, it is sometimes necessary to assume axioms
in our proofs. We summarize here the collection of axioms used in Verasco. This section
is for specialists of formal verification in Coq: non-specialists may ignore this section and
proceed to the next one. The takeaway of this section is that the formalization of Verasco
depends only on harmless axioms.
The hypotheses used in the final soundness theorem of Verasco can be divided into three

categories:

Logical axioms. In Verasco, we use three purely logical axioms: proof irrelevance, ex-
cluded middle and dependent functional extensionality. We recall here their exact state-
ments:

∀ (A:Prop) (a1 a2:A), a1 = a2
∀ P:Prop, P \/ ~P
∀ (A:Type) (B : A -> Type) (f g : ∀ x:A, B x), (∀ x, f x = g x) -> f = g

These are widely recognized as harmless axioms and included in many developments using
Coq.

Axiomatization of reals. The axiomatization of real numbers from Coq’s standard li-
brary is used in the Flocq library for describing the real value of floating-point numbers.
CompCert and Verasco rely on Flocq for their handling of floating-point numbers. We recall
that this axiomatization includes the type of reals itself, the operations over reals and their
properties.

Parameters and external functions. The Coq development uses many parameters and
external functions replaced with actual values during the extraction to OCaml code. These
externals do not carry any logical contents because they have clearly inhabited types and
no hypotheses are made on their value, hence they do not endanger the guarantees provided
by the logic.

1.3. Other Formal Verification Projects
The use of formal verification led to many different projects aiming at formally verifying
large software. Here, we describe briefly a few projects that we find particularly impressive.

23

Chapter 1. Introduction to Functional Formal Verification of Software

We do not claim that this list is comprehensive: our aim is to give an idea of how far we
can go when using formal verification tools.

1.3.1. Formal Verification of Programming Tools

CompCert: a formally verified C compiler. CompCert [Com, Ler06, Ler09a, Ler09b,
BDL06] is a compiler for most of the C99 language written in the programming language of
Coq. It takes as input a C99 program and produces an assembly code corresponding to this
input program. It can target x86, PowerPC or ARM assembly. It comes with a formal proof
of semantic preservation: if the compiler produces some code without reporting an error,
then any observable behavior of the produced program is an observable behavior permitted
by the semantics of the source program.
Importantly, CompCert includes many optimization passes, making the performance of

the produced code competitive with industrial C compilers with few optimizations acti-
vated. Given the amount of research needed to build these unverified compilers, this level
of optimization is already impressive.
An essential prerequisite to verifying a compiler is formalizing the semantics of the input

and output languages. Therefore, CompCert includes a mathematical definition of the
semantics of C99 and assembly, but also of the many intermediate languages it uses. Verasco
depends on CompCert, because it uses directly one of its intermediate languages, called
C#minor: this way, Verasco avoids the tedious design and proof of a C front-end. By
using the same formal semantics for C#minor as CompCert, Verasco and CompCert, when
combined, bring formal safety guaranties on the produced assembly code.
Similarly to Verasco, CompCert is directly programmed using the Coq programming

language, and uses Coq’s extraction mechanism to generate OCaml code that is compiled
into an executable.
Additionally to Verasco, CompCert has a large ecosystem of variants adding features

nonexistent in the main version. This include, for examples, CompCertTSO [ŠVZN+13] for
shared-memory concurrency, Compositional CompCert [SBCA15] for separate compilation
and CompCertSSA [BDP14] for further optimizations.

Jinja: formal verification of a Java subset. Jinja [KN06] is a formally verified imple-
mentation in Isabelle/HOL of a large subset of the Java language, together with its virtual
machine and a Java compiler. Additionally, Jinja includes a type checker for its input lan-
guage, and a static checker of the definite assignment rule requiring that every variable is
assigned before being read. Their work also includes a bytecode verifier, ensuring that the
given bytecode program verifies all the properties required by the Java Virtual Machine.
The authors of Jinja emphasized the fact that the different tools they formally verified are
tightly integrated: for example, the compiler correctness theorem not only states that it
preserves semantics, but it also preserves well-formedness. That is, any source program
validated by the type-checker will pass the bytecode verifier.

The Verifiable Software Toolchain. The Verifiable Software Toolchain (VST) is a
framework [VST] for formally verifying C code using a separation logic for Clight, an inter-
mediate language of CompCert. VST uses the same semantics as CompCert for Clight, so
that programs formally verified using VST can be translated into formally verified assembly
code using the CompCert compiler. Interestingly, VST is able to verify concurrent code
using shared memory.

24

1.3. Other Formal Verification Projects

1.3.2. Formal Verification of Operating System Components
Operating systems, and, in particular, operating system kernels are an essential component
of any computer system. The correctness of virtually every software relies on the correctness
of the operating system this software is running on. Moreover, they are usually very complex
software, mixing low-level code with advanced algorithms. Therefore, the need of formal
verification of these programs is important. We present here four projects aiming at formally
verifying operating system components.

The seL4 microkernel. One of the problems of the formal verification of operating sys-
tems is the usual large size of such software. Therefore, it is natural to verify a microkernel,
which is an operating system kernel reduced to its strict minimum: a microkernel typically
only contains a scheduler, a memory management system and a basic inter-process com-
munication system, but no device drivers, which are usually implemented as independent
programs.
L4 is a family of high-performance microkernels, of which seL4 [seL, KEH+09] is a partic-

ular variant. The particularity of seL4 is that it is formally verified using the Isabelle/HOL
proof assistant. More precisely, the authors of seL4 wrote an abstract specification of
the kernel within Isabelle/HOL, refined by an executable specification, which is itself a
refinement of their C implementation. These two refinements are proved correct using
Isabelle/HOL.
The formal proof of seL4 guarantees that the microkernel primitives always terminate

without performing illegal operations (such as illegal memory accesses), and that it complies
with the abstract specification. Moreover, it gives strong security guarantees by using a
specially crafted access control mechanism.

CertiKOS: certified kit operating system. The CertiKOS [Cer] project aims at certi-
fying operating system kernels. An achievement of this project is the formal verification
of mCertiKOS, an operating system kernel. It has several variants, mCertiKOS-hyp is a
hypervisor able to boot Linux, and mCertiKOS-emb targets embedded applications.
The authors of mCertiKOS report an impressively low amount of work needed for their

formalization (about 1 person year). The originality of their approach is the use of deep
specifications and layered programming [GKR+15]. The mCertiKOS kernel is divided into
several stacked layers, each of them implementing a component of the kernel. Every layer has
a deep specification, which gives an executable, deterministic description of its behavior,
using abstract mathematical objects. The layer itself is an implementation of its deep
specification using that of the underlying layer and a piece of low-level code. The deep
specification of the highest layer gives an abstract specification of the whole kernel, from
which one can prove functional properties (e.g., security guarantees...).
The different layers of mCertiKOS are either implemented in assembly or in Clight and

compiled with a modified version of CompCert. The result is that, contrarily to seL4, the
compiler is not in the trusted code base: only the formal semantics of assembly (and the
Coq proof assistant) are relied on.

Verve: a type and memory safe operating system. Verve [YH11] is an operating
system the implementation of which is guaranteed to be free of type and memory errors:
that is, it targets a less ambitious goal than seL4 and CertiKOS (there is no proof of
functional properties), but with a smaller formalization effort. The methodology used by
the developers of Verve is to reduce to the minimum the amount of code to verify, and use
a typed assembly language, obtained from compilation of C# code, to make sure the rest

25

Chapter 1. Introduction to Functional Formal Verification of Software

of the code is safe. The verified part of the code, called the Nucleus, is implemented using
the Boogie tool and easily translates into assembly. The Nucleus provides basic runtime
features: a basic garbage collector, interrupt handling, multiple stacks and device access.

The FSCQ certified file system. FSCQ [CZC+15] is a file system written and formally
verified using Coq. Its authors created a so-called crash Hoare logic, enabling them to
reason about the recoverability of the state of the file system: they have proved that FSCQ
is able to reconstruct a valid state for the file system without loss of data, even if the system
crashes at any unexpected point in time. FSCQ is written in Coq, extracted into Haskell
and then ran in user space under Linux using Fuse. It has reasonable performances and
supports all the core features required by the POSIX standard.

1.3.3. Verification of Security Properties

miTLS: a Verified Reference Implementation of TLS. TLS is a widely used protocol
for guaranteeing confidentiality, authenticity and integrity of connections on the Internet.
This protocol is the basis of the HTTPS protocol providing security for the World Wide
Web. Because of its large complexity, TLS has suffered from many security breaches, coming
not only from its implementations, but also from the design of the protocol itself. Any of
these breaches are taken very seriously by software makers, because TLS is probably the
most used cryptographic protocol in the world.
Because of its complexity and of the previously discovered breaches, doubts still exist

about the security of TLS. The TLS implementation miTLS [miT] aims at removing these
doubts by formally verifying a reference implementation, and proving theorems about the
security of the protocol. The latest release is written in F7 and F#, but the development
version uses F* instead.
This reference implementation provides unprecedented security guarantees compared to

existing implementations using most often complex C code subject to bugs such as buffer
overflows. Moreover, in the process of proving security properties of TLS, developers of
miTLS found new security vulnerabilities in the TLS protocol.

Formal verification of a Java Card product. The Gemalto company used a Coq formal-
ization [CN08] as a formal argument for qualifying a Java Card product at the level EAL7
of Common Criteria, which is the highest possible level of certification. Their Coq formal-
ization proves the equivalence between the high-level specification and the low-level design,
but the translation between the low-level design and the C implementation is performed by
hand and checked informally.

1.3.4. Formally Verified Mathematical Theorems

Proof assistants such as Coq or Isabelle/HOL are primarily targeted at proving mathemati-
cal theorems. Therefore, mathematical theories are direct clients of these tools, even before
thinking of proving programs. As a result, the use of proof assistants as evidence of the
correctness of a theoretical result became routine in some research communities, like at the
POPL and ICFP conferences.
Mathematics are not, properly speaking, computer software. We decided to include these

projects in this list for two reasons: first, developing the proof of a theorem is a very similar
activity as proving correct a program, and second, some of these results can be used in
proofs of software.

26

1.3. Other Formal Verification Projects

Flocq: a formalization of floating-point arithmetic. The Flocq library [BM11] is a
formalization of floating-point arithmetic within the Coq proof assistant. It is very general:
any basis, precision, formats and rounding modes are allowed, from base-2 to base-10 and
above, from floating-point formats to fixed-point formats and from rounding to nearest to
rounding to infinities. Importantly, all the arithmetic operations are specified in terms of
ideal real arithmetic, so that no space is left for a bug in these operations.
In CompCert and, consequently, in Verasco, specific kinds of floating-point numbers

are used: the “binary64” and “binary32” floating-point numbers specified by the IEEE754
standard [IEE08]. Flocq contains specialized implementations of all the arithmetic opera-
tions that are formally verified with respect to the general reference implementation and
optimized for the case of IEEE754 floating-point numbers. CompCert depends on this im-
plementation of floating-point numbers, but as a black-box: it uses few of their properties.
On the other hand, in Verasco, we rely heavily on many theorems over floating-point

numbers proved in Flocq. Floating-point numbers are used in the source language but also
in the implementation of the abstract domains. Therefore, the Flocq theorems are used
to characterize the behavior of floating-point operations in the source language and in the
implementation of Verasco itself.

Mathematical Components. Mathematical components is a library, written using the
Coq proof assistant, aiming at proving mathematical theorems. It has been successfully used
to formalize modern, abstract mathematics. This includes the four color theorem [Gon08]
and the Odd Order theorem [GAA+13], which are both challenging theorems whose manual
proof would need several hundred of pages.

27

Chapter 2

Introduction to Abstract Interpretation

Static analyzers are tools designed to predict the behavior of programs before executing
them. Static analyzers are often used for finding bugs or guaranteeing the absence of some
classes of bugs in programs such as erroneous behavior. Their advantage compared to other
formal methods is their ability to process large programs with little user interaction.
A largely used methodology for building static analyzers is abstract interpretation [CC76,

CC77, CC79]. It gives a general framework for speaking about the abstractions that need to
be used in order to approximate the behavior of programs in a computable manner. We give
in Section 2.1 and Section 2.2 an introduction to abstract interpretation. In Section 2.3, we
study the current state of the art on static analyzers based on abstract interpretation, and
more specifically its formalization.
In this chapter, our presentation of abstract interpretation is idealized: the theory we

describe is close to its historical formulation, but not adapted to the formalization in Coq.
The understanding of this idealized setting is important for designing and formalizing static
analyzers based on abstract interpretation, although we describe later in Section 3.1 the
adjustments needed for Verasco.

2.1. Abstract Interpretation Concepts

The challenge of static analysis is to approximate various sets representing states and be-
haviors of programs. For example, we need to approximate the set of states a program can
reach or the sets of values a variable can take at a given program point. These sets are
potentially infinite and cannot be directly represented by the static analyzer. Therefore,
the static analyzer stores approximations of these sets. These approximations are called ab-
stract values, belonging to abstract domains, while the approximated sets are the concrete
values, belonging to concrete domains.
In order to approximate sets in abstract domains, we need to reflect basic set operators,

such as inclusion, union and intersection, but without directly describing sets, which are
too complex. The nice theoretical structure for describing abstract domains is the structure
of lattice, and the theoretical tool for defining the link between the approximated concrete
domain and the approximating abstract domain is the notion of Galois connection.

29

Chapter 2. Introduction to Abstract Interpretation

2.1.1. Lattices
A lattice is a set equipped with a partial order relation ≤ and two operators1 ∨ and ∧, called
respectively join and meet. The join operator, noted ∨, computes the least upper bound of
two elements: that is, A ∨ B is larger than A and B, but smaller than any element of the
lattice verifying this property:

A ≤ A ∨B B ≤ A ∨B ∀C, (A ≤ C and B ≤ C)⇒ A ∨B ≤ C

Dually, ∧ computes the greatest lower bound of two elements: that is, A∧B is smaller than
A and B, but larger than any element of the lattice verifying this property:

A ∧B ≤ A A ∧B ≤ B ∀C, (C ≤ A and C ≤ B)⇒ C ≤ A ∧B

An important example of lattice is the powerset lattice of a given set. Let Ω be a set and
P(Ω) the set of its subsets (i.e., the powerset of Ω). The powerset P(Ω) naturally forms a
lattice: its elements can be ordered by set inclusion, union is the join and intersection is
the meet.
Another example of lattice is the parity lattice. It has 4 abstract values: ⊤, ⊥, Odd and

Even. The lattice structure is given in the following tables:

≤ ⊤ Odd Even ⊥
⊤ ×
Odd × ×
Even × ×
⊥ × × × ×

∨ ⊤ Odd Even ⊥
⊤ ⊤ ⊤ ⊤ ⊤
Odd ⊤ Odd ⊤ Odd
Even ⊤ ⊤ Even Even
⊥ ⊤ Odd Even ⊥

∧ ⊤ Odd Even ⊥
⊤ ⊤ Odd Even ⊥
Odd Odd Odd ⊥ ⊥
Even Even ⊥ Even ⊥
⊥ ⊤ ⊥ ⊥ ⊥

One last example of lattice is the lattice of possibly unbounded integer intervals. It is
given by the set I:

I = {[a, b] | a, b ∈ Z ∪ {−∞,+∞}}

It can be ordered by the inclusion of intervals defined by the relation ≤ defined by:

a2 ≤ a1 b1 ≤ b2

[a1, b1] ≤ [a2, b2]

Then, join and meet for intervals can easily be defined (and their properties proved):

[a1, b1] ∨ [a2, b2] = [min{a1; a2},max{b1; b2}]
[a1, b1] ∧ [a2, b2] = [max{a1; a2},min{b1; b2}]

The largest element of the lattice of intervals is [−∞,+∞], and the smallest element is
[+∞,−∞].

1It appears that these two operators have the same notation as the logical connectives and and or used
in Chapter 1. It should be easy throughout this document to distinguish the lattice operators from the
logical connectives using the context.

30

2.1. Abstract Interpretation Concepts

2.1.2. Galois Connections

There is a strong intuition behind integer intervals or parity: they represent sets of integers.
This intuition can be formalized by defining a concretization function, written γ, that gives
the set of integers represented by a given interval or parity information:

γItv([a, b]) = {x ∈ Z | a ≤ x ≤ b}
γParity(⊥) = ∅ γParity(Even) = {x ∈ Z | x mod 2 = 0}
γParity(⊤) = Z γParity(Odd) = {x ∈ Z | x mod 2 = 1}

Conversely, for any given subset X of Z, there is a smallest interval approximating it.
This interval is called the abstraction of X, and noted αItv(X):

αItv(X) = [infX, supX]

where we take the convention min ∅ = +∞ and max ∅ = −∞. Similarly, an abstraction for
the parity αParity(X) can be defined by considering whether X is empty, contains only odd
elements, only even elements or both odd and even elements.

We say that the pair (αItv, γItv) forms a Galois connection between the lattice of intervals,
the abstract domain, and the lattice of subsets of Z, the concrete domain. Formally, a Galois
connection between a concrete domain X and an abstract domain Y is a pair of functions
α : X → Y and γ : Y → X such that:

∀x ∈ X, ∀y ∈ Y, α(x) ≤ y ⇔ x ≤ γ(y)

In particular, this implies that α and γ are increasing, that ∀x, x ≤ γ(α(x)) and that
∀x, α(γ(x)) ≤ x. We use the following notation to denote that the pair (α, γ) is a Galois
connection:

X −−−→←−−−α
γ

Y

Galois connections answer formally to a natural problem: it is often impossible or im-
practical to compute anything directly on the semantics of a program. Therefore, we use
approximations that will possibly miss properties of the program (i.e., they are not com-
plete), but never compute false properties (i.e., they are sound). The benefit is that such
an approximation makes the computation easier. Galois connections help us define the link
between these approximations (the abstract domain) and the actual behaviors (the concrete
domain). In practice, as we see in Section 3.1, not every abstract domain can be described
by a lattice and a Galois connection, but, in the good cases, the definition of a Galois con-
nection over an abstract domain simplifies its design and gives systematic methods for the
definitions of the primitives of the domain.

When applying the abstraction function, we lose some information: for example, the two
different sets of integers {1; 3} and {1; 2; 3} have the same abstraction [1, 3] in the domain
of intervals. This means that not all sets of integers are represented exactly by intervals,
and that some sets will be over-approximated. Conversely, there is a redundancy in our
representation of intervals: indeed, several intervals have the empty set as a concretization.
The abstraction function removes this redundancy by always giving the best abstraction.
That is, α(X) is the smallest abstract value approximating X (i.e., with a concretization
larger that X).

31

Chapter 2. Introduction to Abstract Interpretation

2.1.3. Transfer Functions

Approximating concrete sets is not enough for analyzing programs: indeed, it is important
to be able to reflect in these approximations the computations over concrete values and
states appearing in the semantics of the program. For example, in the case of sets of integer
values, we want to model the sum of two such sets, so that we can approximate the addition
of integers appearing in the semantics of programs.
More formally, a concrete transfer function F is a monotonic function from one or several

concrete domains to a concrete domain. For example, the concrete transfer function for the
addition of integers takes two sets of integers and returns a set of integers. It is defined as
follows:

A+B = {a+ b | a ∈ A and b ∈ B}

When the concrete domains are powerset lattices, which is most often the case, it is often
possible to define transfer functions as functions on elements rather than on subsets. For
example, in the case of integer addition, it is convenient to define the transfer function on
integers (which is trivial: it is simply integer addition) rather than on sets of integers.
Concrete transfer functions are approximated by abstract transfer functions, which are

usually easier to compute but less precise. Formally, if F : C1 × · · · ×Cn → C is a concrete
transfer function from concrete domains C1 · · ·Cn to concrete domain C, then an abstract
transfer function F ♯ : A1 × · · · ×An → A is a sound approximation of F if:

∀X1 . . . Xn, F (γ1(X1), . . . , γn(Xn)) ≤ γ(F ♯(X1, . . . , Xn))

That is, the abstract transfer function always returns sound approximations when given
sound approximations. Because (α, γ) is a Galois connection, this definition is equivalent
to:

∀X1 . . . Xn, α(F (γ1(X1), . . . , γn(Xn))) ≤ F ♯(X1, . . . , Xn)

This means that the Galois connection naturally gives us a candidate for an abstract trans-
fer function approximating a given transfer function. Indeed, α(F (γ1(X1), . . . , γn(Xn))) is
a sound approximation, which is better (i.e., smaller) than all others. The definition of this
sound approximation is not constructive: it uses concrete values as intermediate computa-
tion steps. Hence, this best abstract transfer function is not always easy to compute, but
can serve as a guide for measuring the precision of abstract transfer functions.
Join and meet in the concrete abstract domain can be seen as concrete transfer functions,

and their counterparts in the abstract domain as their abstract approximations. However,
they are not necessarily optimal as transfer functions and may need reductions to improve
precision.

2.1.4. Reductions

A particular case of concrete transfer function is the identity: it does not change anything
in the concrete, and hence can be applied to concrete values as often as necessary. In the
abstract, the identity is of course a sound approximation of the concrete identity, but it is
often neither the only one nor the best one. A reduction operator is a sound approximation
of the concrete identity: it can be applied soundly on any abstract values at any time. The
abstract value returned by a reduction operator is always a sound approximation of what
their argument is a sound approximation of.
Reductions are useful because some abstract domains have redundancies and hence con-

tain several abstract values with the same concretizations. Among these abstract values,

32

2.1. Abstract Interpretation Concepts

some are better than others because they express more properties of the concrete or have a
more compact representation. Reductions typically compute such better approximations.
When using lattices and Galois connections, there is always a best reduction, just like

there is always a best transfer function: the best reduction of an abstract valueX is α(γ(X)).
Hence, when this best reduction is easy to compute, we should apply it on every computed
abstract value.
In our example of intervals, there are several approximations for the empty set: any [a, b]

with b < a is such an approximation. Among them, [+∞,−∞] is the smallest one when
considering the ordering of intervals using their bounds. It is preferable to use it rather
than others, because it is the only one encoding the fact that any integer in the empty set is
larger than +∞ and smaller than −∞: this is the one carrying the most information about
the empty set, and, in particular, the only one being smaller than any other, possibly non
empty, interval. Therefore, the best reduction operator ρ for our intervals is:

ρ([a, b]) =

{
[a, b] when a ≤ b

[+∞,−∞] otherwise

2.1.5. Products of Abstract Domains

An abstract domain is an approximation of a concrete domain. In order to get a more
precise approximation, we need to combine abstract domains. For example, we can combine
the information provided by an interval with parity information to get a more precise
approximation of a subset of Z.
It is easy to define the product of two lattices L1 and L2. It is given by the set L1 × L2,

equipped with the pointwise order relation and the pointwise meet and join operators:

(x1, y1) ≤ (x2, y2) ≡ x1 ≤ x2 and y1 ≤ y2

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2)

(x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2)

Similarly, if we have two Galois connections (α1, γ1) and (α2, γ2) for the same concrete
domain but for two different abstract domains, we can define a Galois connection (α, γ) for
the product of the two abstract domains:

α(x) = (α1(x), α2(x)) γ(x, y) = γ(x) ∧ γ(y)

The next step is to define transfer functions for the combination of two abstract domains.
The easiest method to define them is in a pointwise manner: we apply transfer functions on
each component without any interaction between abstract domains. For a unary abstract
transfer function F ♯ over a product of abstract domains, this gives:

F ♯(X1, X2) = (F ♯
1(X1), F

♯
2(X2))

If we use these transfer functions for the implementation of the combination of the two
abstract domains we get the direct product of the two abstract domains.
Direct products are usually easy to implement, but not precise. Indeed, they provide no

cooperation mechanism between the components of the product. For example, consider the
direct product of the interval abstract domain and the parity abstract domain, and consider
the abstract transfer functions approximating the absolute value. Applied to the interval
[−1, 1], it returns [0, 1], and applied to the parity Odd, it returns Odd. Therefore, the abstract

33

Chapter 2. Introduction to Abstract Interpretation

transfer function for the direct product, applied to the abstract value ([−1, 1], Odd), returns
([0, 1], Odd). However, the interval [0, 1] is not as precise as possible, because 0, being an
even number, need not be included in the interval. A cooperation between the two abstract
domains would compute the better abstract value ([1, 1], Odd).
The problem here is that using the product of two abstract domains creates redundancies.

Therefore, we should use reduction functions in order to eliminate them. Typically, such a
reduction function for the product of two abstract domains will transfer as much information
as possible from one domain to the other. If we use systematically the best reduction
function after each computation, the resulting abstract domain is called the reduced product
of the two abstract domains.

2.2. Analyzing Toy Programs

The intuition behind static analysis by abstract interpretation is that the analyzer behaves
like an interpreter, but using a non-standard semantics. This so-called abstract semantics
is designed so that it always terminates: the static analyzer can always compute it in
finite time. The “runs” of the abstract semantics are in close connection with the standard
concrete semantics of the program, via a Galois connection. In particular, the abstract
semantics always represents a larger set of behaviors than the actual set of behaviors of
the program. Hence, we are able to deduce properties of the executions of programs from
the results of this “interpretation in the abstract”. However, not all the properties of all
programs can be deduced from the abstract semantics, because the abstract semantics
potentially over-approximates the concrete semantics.
In this section, we describe the formalism behind such abstract semantics. In this in-

troduction, the abstract semantics is based on intervals: that is, instead of executing the
program with integer values for variables, we execute it with interval values for variables.
The values of a variable in an actual run are guaranteed to be in the concretization of the
corresponding interval in the abstract run.
Because the concrete runs of the program can be unbounded in execution time or even

non-terminating, there cannot be a simple one-to-one correspondence between the concrete
runs and the abstract runs. Therefore, we do not directly approximate the set of traces
of the program, but rather the set of reached states, called the collecting semantics. This
semantics can be characterized using a set of equations which can be themselves easily
reflected in the abstract domain. We explain first this traditional method, then give another
presentation, which gives very similar results, but can be implemented more easily in the
case of structured languages.

2.2.1. Collecting Semantics

A static analyzer based on abstract interpretation computes an approximation of all the
behaviors of the given program. The behaviors of the program are often represented by
traces (i.e., sequences of states), and hence the objective of the static analyzer is to compute
an over-approximation of the set of traces of the given program.
Traditionally, the first step towards this approximation is the definition of the collecting

semantics of the program. In the case of an analysis for safety such as ours, the collecting
semantics of a program is the set of states it can reach. This is a first approximation of the
semantics of the program, because we cannot determine, for example, whether the program
always terminates using the collecting semantics. Nonetheless, the collecting semantics
can be used for determining interesting properties of the program, such as whether it can

34

2.2. Analyzing Toy Programs

produce an error.
For Toy programs, a state can be decomposed into an environment representing the values

of the variables and a queue of statements to be executed, representing the current position
in the code. For a given Toy program, the possible queues are in finite number and can be
materialized in the program syntax as control points. Control points represent the positions
in the program syntax at which the execution can be. For example, we can tag the factorial
program seen earlier with control points noted by circled numbers:

x⇒ 1 r := 1;

2 while 3 x do

4 r := x× r;

5 x := x+−1
6 done;

7 return r

Using this set of control points, noted CP, we can represent the set of states the program
can reach (i.e., the collecting semantics) as a function S : CP → P(V → Z) from control
points to sets of environments: a control point is associated to the set of environments the
state can have at this point.
The collecting semantics can be characterized by a set of equations we can translate in

the abstract domains. Consider our running example of factorial function, and assume that
S is its collecting semantics.

• For the control point 1 , we have S(1) = {ρ0x←v}, where ρ0x←v is the environment
such that ρ0x←v(x) = v and ρ0x←v(y) = 0 if y ̸= x. Indeed, ρ0x←v is the only initial
environment according to the operational semantics.

• For the control point 2 , we have S(2) = Jr := 1K(S(1)), where Jr := 1K is the
concrete assignment transfer function for r := 1. Formally, the concrete transfer
function for an assignment x := e gives the set of possible environments after the
assignment, assuming that the environment before the assignment is in the given set:

Jx := eK(X) = {ρ′ | ∃ρ ∈ X, (∀y ̸= x, ρ′(y) = ρ(y)) and ρ ⊢ e ⇓ ρ′(x)} (2.1)

• Similarly, we have S(5) = Jr := x× rK(S(4)) and S(6) = Jx := x+ 1K(S(5)).

• The control point 3 is a join point, merging the control flow coming from 2 and
6 . Hence, the possible environments are exactly those coming from these two control
points. Thus, we have S(3) = S(2) ∪ S(6).

• For the control point 4 , we have S(4) = Jx ̸= 0K(S(3)), where Jx ̸= 0K is the con-
crete assumption transfer function for the assumption x ̸= 0. The concrete assumption
transfer function filters the environments verifying the given condition. Formally, the
concrete transfer function for the assumption e ̸= 0 is given by:

Je ̸= 0K(X) = {ρ | ρ ∈ X and ∃n ̸= 0, ρ ⊢ e ⇓ n} (2.2)

• Similarly, for control point 7 , we have S(7) = Jx = 0K(S(3)), where:

Je = 0K(X) = {ρ | ρ ∈ X and ρ ⊢ e ⇓ 0} (2.3)

35

Chapter 2. Introduction to Abstract Interpretation

We can merge all these equations into one equation over S. We write S = F (S), where
F is an increasing function on the lattice CP → P(V → Z), defined using the previously
defined equations. It can be proven that the collecting semantics is the smallest solution of
the fixpoint equation F (S) = S.
As a side remark, the collecting semantics can be seen as an abstraction of the semantics

of the program [Cou02]. Indeed, if we equip both sets of trace and sets of states with
the powerset lattice structure, we can see the transformation from the set of traces to the
collecting semantics as a Galois connection. This Galois connection is often called the state
abstraction.

2.2.2. Approximating the Collecting Semantics

Many properties of the concrete behaviors of a program can be stated on its collecting
semantics, an element of CP → P(V → Z) giving the reachable states of the program.
However, the sets of environments (i.e., elements of P(V → Z)) present in the collecting
semantics are still potentially infinite and hence complex objects. Therefore, an additional
layer of approximation is needed in order to write a static analyzer that uses only objects
on which it knows how to compute.
This new abstraction approximates sets of environments using abstract environments. In

many cases2, an abstract domain E of abstract environments is equipped with a lattice
structure and a Galois connection between abstract environments and the powerset lattice
of concrete environments:

P(V → Z) −−−−→←−−−−
αEnv

γEnv E

Then, to approximate the collecting semantics, we use a map from control points to abstract
environments: each abstract environment approximates the set of concrete environments
the program can have when reaching a given control point. This is an example of an
abstract domain functor, building an abstract domain for the collecting semantics based on
an abstract domain for environments. That is, using the Galois connection (αEnv, γEnv) for
environments, we can build a Galois connection (αSem, γSem) for the collecting semantics:

CP → P(V → Z) −−−−→←−−−−
αSem

γSem CP → E

αSem(S) = cp 7→ αE(S(cp))

γSem(S
♯) = cp 7→ γE(S

♯(cp))

2.2.3. Approximating Sets of Environments: Non-Relational
Abstractions

To build an abstract domain for environments of Toy, we need a numerical abstract domain,
handling numerical properties of environments. In contrast, in Verasco, as we explain in
Section 3.2, we need a more complex hierarchy of abstractions in order to take into account
the more complex structure of C#minor memory.
A simple way of building a numerical abstract domain is by using a non-relational ab-

straction, which is another abstract domain functor. This functor uses an abstract domain
concretizing to sets of integers, such as intervals or parity, and builds an abstract domain
for numerical environments. To this end, this abstract domain associates to each variable

2As we explain in Chapter 3, this is not always true, and we often weaken this formalism in actual abstract
interpreters such as Verasco.

36

2.2. Analyzing Toy Programs

an abstract value approximating the values the variable has in the approximated environ-
ments. More formally, assume we have a numerical abstract domain Z in Galois connection
with P(Z):

P(Z) −−−→←−−−
αZ

γZ Z

From this Galois connection, we can build a Galois connection between the lattice P(V → Z)
of sets of concrete environments and the lattice E = V → Z of abstract environments:

P(V → Z) −−−−→←−−−−
αEnv

γEnv V → Z

αEnv(X) = v 7→ αZ({ρ(v) | ρ ∈ X})
γEnv(X

♯) = {ρ | ∀v, ρ(v) ∈ γZ(X
♯(v))}

This non-relational abstraction is not exact: it can miss potentially interesting properties of
numerical environments. That is, even if the abstract domain Z on integers were exact (e.g.,
Z = P(Z), with the identity Galois connection), the derived non-relational abstract domain
for numerical environments would not be able to represent every property over numerical
environments. In particular, it is not possible to represent relations between the values of
different variables: for instance, it is impossible, with a non-relational abstract domain, to
establish the fact that x − y ≤ 2 for two program variables x and y. Relational abstract
domains exist: a popular example is the abstract domain of octagons, whose implementation
in Verasco is described in Chapter 8.
In this introductory chapter, we limit our choice of numerical abstract domain to the

non-relational abstract domain of intervals. Hence, to summarize, our abstract domain for
approximating the collecting semantics of the program uses elements of CP → V → I,
where CP, the set of control points, and V, the set of program variables are finite. This
lattice is simple enough that we can represent its elements in the static analyzer (using,
e.g., finite maps) and implement operations using these abstract values. These operations
include comparison, join, meet and transfer functions.

2.2.4. Abstract Semantics
The series of abstract domains we have defined is a tool to compute an approximation of
the semantics of programs. We now have to compute this approximation by reflecting in the
abstract domains the fixpoint equation F (S) = S characterizing the collecting semantics.
Assume we have an abstract transfer function F ♯, called abstract semantics approximating
the concrete transfer function F:

∀X,F (γSem(X)) ≤ γSem(F
♯(X)) (2.4)

The property we use to get an approximation of the collecting semantics S is that post-
fixpoints of F ♯ (i.e., abstract values S♯ such that F ♯(S♯) ≤ S♯) are approximations of the
least fixpoint of F (i.e., the collecting semantics). Indeed, further assume that we have
such a post-fixpoint S♯ of F ♯. Then, F (γSem(S

♯)) ⊆ γSem(F
♯(S♯)) ⊆ γSem(S

♯), thus γSem(S
♯)

is a post-fixpoint of F . But a general property of least fixpoints of increasing functions in
complete lattices is that a post-fixpoint is always larger than the least fixpoint (this is a
consequence of the proof of the Knaster–Tarski theorem). Thus, we have S ⊆ γSem(S

♯); so
S♯ is an approximation of the collecting semantics.
Therefore, it remains two problems: first, we need to find an abstract transfer function

F ♯ approximating F , the abstract semantics and second, we need to find an algorithm to

37

Chapter 2. Introduction to Abstract Interpretation

compute a post-fixpoint of F ♯.
The abstract semantics F ♯ is built by combining approximations of the initial environment

and of the transfer functions for assignment, assumption and union. Concrete union is
soundly approximated by the abstract join. Approximating the initial environment is just
as easy: we know the interval [0, 0] for every variable, except the program parameter.
Moreover, an interval for this paramter is typically given as a parameter of the static
analyzer. We describe here the approximation of the assignment transfer function, but
omit the approximation of assumption, which is more technical. We refer the reader to
Section 6.1.4 for the description of such an algorithm in Verasco.
In order to approximate soundly the concrete transfer function for assignments, we need

to get an interval for the possible values of an expression when the environment is in the
concretization of a given abstract environment: that is, given an interval for every variable
(i.e., an abstract environment), what is an interval for the given expression? Again, we can
answer this question with a pair of a concrete and an abstract transfer function. For a given
expression e, the concrete transfer function JeK associates to a set of concrete environments
the set of values e can have in one such environment:

JeK(X) = {v | ∃ρ ∈ X, ρ ⊢ e ⇓ v} (2.5)

An abstract transfer function JeK♯ approximating this concrete transfer function returns
an interval for the expression when given an abstract environment. Recall that abstract
environments associate an interval to each variable: they are elements of V → I. A possible
such abstract transfer function is defined recursively on the structure of e:

JnK♯(E) = [n, n] when n ∈ ZJxK♯(E) = E(x) when x ∈ VJ−eK♯(E) = −♯(JeK♯(E))Je1 + e2K♯(E) = (Je1K♯(E)) +♯ (Je1K♯(E))Je1 × e2K♯(E) = (Je1K♯(E))×♯ (Je1K♯(E))Je1 ÷ e2K♯(E) = (Je1K♯(E))÷♯ (Je1K♯(E))

where the negation, addition, multiplication and division of intervals are themselves abstract
transfer functions approximating their concrete counterparts. For example, the negation and
addition of intervals can be defined by:

−♯[a, b] = [−b,−a] [a1, b1] +
♯ [a2, b2] = [a1 + a2, b1 + b2]

We can prove that these two definitions are optimal, provided the given intervals are reduced:
they correspond exactly to the best transfer function provided by the Galois connection for
intervals. We do not give the definitions of the abstract multiplication and division of
intervals: they are technical but do not present any theoretical difficulty.
It should be noted that this transfer function for expressions is not optimal. That is, in

some situations, the interval it will return for an expression is not the best possible one. For
example, if we have the interval [−1, 1] for the variable x, then it will compute the interval
[−1, 1] for the expression x× x, while [0, 1] is a smaller, but still sound interval.
Using JeK♯, we can define Jx := eK♯, the abstract transfer function for assignments, which

we need for defining the abstract semantics F ♯. This transfer function computes an abstract
environment approximating the set of possible concrete environments after an assignment,

38

2.2. Analyzing Toy Programs

given an approximation of the set of concrete environments before the assignment:

Jx := eK♯(E) = y 7→

{JeK♯(E) if y = x

E(y) otherwise

For all these abstract transfer functions, we can prove soundness theorems such as:

JeK(γEnv(E)) ⊆ γItv(JeK♯(E)) Jx := eK(γEnv(E)) ⊆ γEnv(Jx := eK♯(E))

Then, we can define the abstract semantics F ♯: it is defined by following the fixpoint
equation characterizing the collecting semantics. We prove the soundness theorem of the
abstract semantics:

F (γSem(X)) ⊆ γSem(F
♯(X))

which lets us deduce, as we have seen, that a post-fixpoint of the abstract semantics F♯ is
necessarily a sound approximation of the collecting semantics.
We do not detail the computation of such a post-fixpoint, which requires some engineering

to be done efficiently [Bou93]. Instead, we will explain in Section 2.2.6 the fixpoint compu-
tation in another setting, which has the other advantage of being closer to the methods we
actually use in Verasco. The important thing to understand here is that the computation of
such a post-fixpoint can be done using always terminating algorithms, and hence the static
analyzer can actually do this computation.
To illustrate these definitions, we give here a possible post-fixpoint of the abstract seman-

tics for the factorial program that could have been computed by a static analyzer, when
given the interval [2, 10] for the possible values of the parameter x:

x⇒ 1 r := 1;

2 while 3 x do

4 r := x× r;

5 x := x+−1
6 done;

7 return r

1 7→ {x 7→ [2, 10]; r 7→ [0, 0]}
2 7→ {x 7→ [2, 10]; r 7→ [1, 1]}
3 7→ {x 7→ [0, 10]; r 7→ [1,+∞]}
4 7→ {x 7→ [1, 10]; r 7→ [1,+∞]}
5 7→ {x 7→ [1, 10]; r 7→ [1,+∞]}
6 7→ {x 7→ [0, 9]; r 7→ [1,+∞]}
7 7→ {x 7→ [0, 0]; r 7→ [1,+∞]}

In particular, we can see that this post-fixpoint is not able to infer any better result interval
than [1,+∞]: in fact, a relational abstract domain is needed to compute a better one.

2.2.5. Deducing Properties of the Program

The role of a static analyzer is to prove properties of a program without executing it: this
can be done using the abstract semantics. For example, if using our static analyzer for Toy,
a simple property that we can compute is an interval for the returned value, by applying
the abstract environment of the final control point to the abstract transfer function of the
result expression.
In the case of Verasco, we are mostly interested in the absence of erroneous behavior. The

mode of operation of Verasco is to emit an alarm whenever it is not able to prove the absence
of an error at some place in the code. Then, the guarantee provided by its main soundness
theorem states that if it does not return any alarm for a given program, then this program
is free of erroneous behavior. This means there are two kinds of alarms Verasco can emit:

39

Chapter 2. Introduction to Abstract Interpretation

true alarms, which correspond to real bugs in the programs, and false alarm, which are
consequences of the incompleteness of the analysis, and Verasco cannot distinguish between
these two kinds of alarms. In contrast, as a consequence of the soundness of the analysis,
there is no “false negatives”, where the analyzer would return no alarm on an incorrect
program.
In the Toy language, erroneous behaviors are divisions by zero. Therefore, error detection

for Toy programs consists in emitting an alarm for each possible division by zero: using
our approximation for the collecting semantics, we compute an interval for each divisor
appearing in the program. If the interval for a divisor contains zero, then the static analyzer
is not able to prove that this division is valid, and therefore emits an alarm.

2.2.6. Structural Abstract Interpretation

This approach for designing static analyzers by approximating the collecting semantics
works, but it has several problems. First, control points are difficult to define and to uniquely
identify in languages whose semantics is not defined in terms of control points. It becomes
even more complicated when dealing with function calls if we want to inline them on-the-fly.
Second, the large amount of required control points makes the data structures needed to
store all the abstract environments use a lot of memory. Third, solving the post-fixpoint
equation of the abstract semantics is not easy and necessitates complex algorithms [Bou93].
The reason for these problems is that, by using this notion of control point, we essentially

forgot the syntactical structure of the program: we would get the same abstract semantics
if the program were transformed to a control flow graph before the analysis.
In this section, we describe how we can define another kind of abstract interpretation on

Toy programs, which uses the syntactic structure of the program and therefore avoids the
problems we mentioned. The abstract interpreter of Verasco follows the same ideas. When
we use the collecting semantics, we approximate the small-step operational semantics of
Toy. Instead, in this section, we will approximate the axiomatic semantics of Toy, defined
in Section 1.1.2.
The axiomatic semantics uses logical predicates for pre- and post-conditions. These log-

ical predicates can be seen, equivalently, as sets of environments for which they are valid.
Therefore, we reuse the abstract domain for approximating environments defined above to
approximate pre- and post-conditions. More precisely, for any statement s, we define an
abstract transfer function JsK♯Stmt, taking as parameter an abstract environment (an approx-
imation of the pre-condition) and returning either an abstract environment (an approxima-
tion of the post-condition) or an error, noted ERR, when the absence of error in s could not
be established. The soundness of this abstract transfer function is stated relatively to the
axiomatic semantics: JsK♯Stmt(Epre) = Epost ̸= ERR

{ρ ∈ γEnv(Epre)} s {ρ ∈ γEnv(Epost)}

We do a slight abuse in notations by letting environments ρ appear in pre- and post-
conditions. Finally, we can apply the abstract transfer function of the body of the program
to the initial abstract environment: if the result is not ERR, then it is guaranteed that
the program does not fail, and the returned abstract environment approximates the final
environment of the program.
Apart from the case of loops, the definition of JsK♯Stmt is straightforward: it literally cor-

responds to programming an interpreter for Toy, but using abstract environments instead

40

2.2. Analyzing Toy Programs

of concrete ones:

Jx := eK♯Stmt(E) =

{Jx := eK♯(E) if, for any divisor d appearing in e, 0 /∈ γItv(JdK♯(E))

ERR otherwise

Js1; s2K♯Stmt(E) =

{
ERR if Js1K♯(E) = ERRJs2K♯(Js1K♯(E)) otherwise

The proofs of soundness of these definitions follow naturally from the Hoare logic.

Analyzing loops

The definition of Jwhile e do s doneK♯Stmt is more complicated: indeed, in order to use the
rule for loops (1.9) of the Hoare logic, we need to weaken the pre-condition in order to get
an invariant valid as a post-condition of the loop body. Another way of seeing the problem
is that we cannot “execute” the loop in the static analyzer, because it might not terminate.
Instead, we need to infer an abstract value I♯ whose concretization can serve as an invariant.
Reflecting (1.9) in terms of J·K♯Stmt, we get the following conditions that I♯ should verify in
order to compute Jwhile e do s doneK♯Stmt(E):

E ≤ I♯ (2.6)JsK♯Stmt(Je ̸= 0K♯(I♯)) ≤ I♯ (2.7)
For any divisor d appearing in e, 0 /∈ γItv(JdK♯(I♯)) (2.8)JsK♯Stmt(Je ̸= 0K♯(I♯)) ̸= ERR (2.9)

Then, assuming that we have such an abstract environment I♯, we can use:

Jwhile e do s doneK♯Stmt(E) = Je = 0K♯(I♯) (2.10)

Therefore, the algorithm for computing Jwhile e do s doneK♯Stmt(E) proceeds as follows:
first, we search for a value for I♯ verifying the two inequations (2.6) and (2.7). This abstract
environment should be as small as possible, because it directly impacts the precision of the
analysis. Then, we check whether (2.8) and (2.9) hold for this solution. If so, we return the
abstract environment described by (2.10); otherwise we return ERR.
It remains to compute an abstract environment I♯ satisfying (2.6) and (2.7). These

conditions state that I♯ is a post-fixpoint of the function X 7→ E ∨ JsK♯Stmt(Je = 0K♯(X)).
The usual way of finding a post-fixpoint of increasing functions in finite lattices is to apply
the Kleene’s fixed-point theorem: we iterate the function starting from E until reaching a
fixpoint. This method cannot be directly applied to our case, because of two problems: first,
the iteration may not terminate because the abstract domain could have infinite ascending
chains and second, the iterated function is not necessarily increasing.
Abstract interpretation provides a general solution to force the iteration to reach a post-

fixpoint in finite time: at each iteration, if a constraint stored in the abstract domain is
unstable (i.e., weakens compared to the previous iteration), then it should be extrapolated
(i.e., either removed or transformed into a weaker constraint). Quickly, no unstable con-
straint remains, and we have a post-fixpoint. More formally, we use a new operator defined
on abstract environments called widening and noted ▽. It should verify the following three

41

Chapter 2. Introduction to Abstract Interpretation

properties:

∀ A B, A ≤ A ▽B (2.11)
∀ A B, B ≤ A ▽B (2.12)

For all sequences (Ai), the sequence (A▽
i) defined by A▽

0 = A0

and A▽
i+1 = A▽

i ▽Ai+1 is ultimately stationary. (2.13)

Then, we compute, in the static analyzer, the following sequence:{
X0 = E

Xn+1 = Xn ▽ JsK♯Stmt(Je = 0K♯(Xn))
(2.14)

until one iteration returns ERR, in which case the post-fixpoint computation fails and we
have no other choice than returning ERR for the loop, or until we reach a post-fixpoint. The
properties of the widening ensure that such a post-fixpoint is necessarily reached after a
finite number of iterations, and that the post-fixpoint in question is larger than E.
Apart from the three properties above, the design of widening operators is a heuristic

task. For the abstract environments we use for Toy, a widening operator can be defined
by applying pointwise a widening operator for intervals. The typical widening operator for
intervals [CC76] is obtained by the following definition:

[a1, b1] ▽ [a2, b2] =

[{
a1 if a1 ≤ a2

−∞ otherwise
,

{
b1 if b2 ≤ b1

+∞ otherwise

]
(2.15)

Using a widening operators makes the post-fixpoint iteration terminate, but it can lead
to a dramatic loss in precision, because unstable constraints are extrapolated quickly. For
example, if we use this widening for intervals for the analysis of our factorial program, we
infer as invariant the interval [−∞, 10] for x instead of [0, 10], and, therefore, any information
on the result of the computation is lost: the final interval for r is [−∞,+∞].
In order to mitigate this loss in precision, we can use another widening operator, or use

additional decreasing iterations after the fixpoint is computed. Both techniques will possibly
lead to a slower iteration process.

2.3. State of the Art in Static Analysis by Abstract
Interpretation

Static analysis by abstract interpretation is an active research area. Progresses were first
achieved in abstract interpretation theory. While this fundamental research continued,
the development of such static analysis tools based on abstract interpretation started, and
several of them are now regularly used by industry for improving the safety of software.
The research needed toward the formal verification of such tools started during the 2000s
and this thesis is the continuation of this work. In this section, we present prior work
that we consider representative of the state of the art in the domain of static analysis
by abstract interpretation. We first consider mature unverified tools and then we present
several attempts toward their formal verification.

42

2.3. State of the Art in Static Analysis by Abstract Interpretation

2.3.1. Static Analyzers Based on Abstract Interpretation

Static analyzers based on abstract interpretation that aim at finding bugs in software can
be categorized into two categories. First, unsound tools such as Coverity [BBC+10] or .Net
CodeContracts static checker [FL10] find bugs in software but do not guarantee the absence
of bug in a given program. Indeed, when these tools face features of the input language
that are particularly difficult to analyze (such as aliasing or reentrancy), they do optimistic
assumptions on the input programs. Therefore, they can miss behaviors, but are capable
of analyzing a large variety of programs while still generating a reasonable amount of false
alarms. Their unsoundness does not mean that they are not useful: a program passing
all those tests without generating an alarm is generally of great quality and less likely to
contain bugs. Second, some tools, such as Astrée [BCC+03, BCC+02], Fluctuat [DGP+09]
or Frama-C Value [Fv] claim to be sound, which means they should never miss incorrect
programs. Sound tools will generally either need more user interaction or produce more
false alarms, but when they do not return any alarm, they provide a formal guarantee of
the absence of some classes of bugs in the given program. Verasco is definitely in the second
category: not only we claim Verasco provides such guarantees, but we give a formal proof
of this property.

Astrée. Astrée [BCC+03, BCC+02] is a sound static analyzer based on abstract inter-
pretation. It is targeted at the verification of large critical real-time software, written in C.
Therefore, it has limited support for features such as recursion or dynamic memory alloca-
tion which are not used in this particular type of programs. On the other hand, it contains
many numerical abstract domains able to prove the complex numerical invariants appearing
in these codes. Astrée has been successfully used to verify the absence of runtime errors in
the fly-by-wire systems embedded in the Airbus A340 and A380 airplanes. The design of
Verasco is largely inspired from that of Astrée.

Frama-C Value. Frama-C is a platform for specifying and verifying C code. Several
Frama-C plugins exist, enabling the user to use several different technologies to prove prop-
erties of her program. One of these plugins, Value [Fv], is a sound static analyzer based on
abstract interpretation. One of its strength is the fact that it can be combined with other
verification techniques through Frama-C in order to circumvent its potential imprecision.

Fluctuat. Fluctuat [DGP+09] is a static analyzer based on abstract interpretation. Its
main objective is the study of the influence of rounding errors of floating-point computations.
It is able to compute bounds of the difference between the actual result of a program and
its theoretical result when executed using reals instead of floating-point numbers. Fluctuat
also tracks the origin of rounding errors (i.e., the contribution from each instruction). It
makes it easy for the programmer to improve the overall precision by targetting the largest
sources of imprecision first.

2.3.2. Mechanization of Abstract Interpretation

We claim that Verasco is currently the most sophisticated and realistic attempt at verifying
a static analyzer based on abstract interpretation. Nevertheless, this is not a new idea, and
several prior attempts can be compared to ours.
Monniaux [Mon98] made one of the first attempts at formally verifying abstract inter-

pretation, as part of his master’s thesis. He formally verified many results about lattice
theory, fixpoint computation and Galois connections. He then implemented two toy static

43

Chapter 2. Introduction to Abstract Interpretation

analyzers: the first analyzed regular expressions and the second targeted a simple imper-
ative language. The first one is fully formally verified and extractable to OCaml, but the
lack of time prevented him to finish the formal verification of the second one.
Pichardie and his colleagues [CJPR04, CJPS05, Pic05, Pic08, BCJP09, CP10] imple-

mented and verified several static analyzers based on abstract interpretation. Their work
include the formal verification of a static analyzer for a simple imperative language and for
the Java bytecode. Their analyzers are built in a composable way, by using the module
system of Coq. Each concept is described as a module interface, and each component as a
module or functor; the static analyzers are constructed by composing these modules. Simi-
larly to the non-mechanized formalization of the Astrée static analyzer, Pichardie explains
that the formalism of Galois connections is unnecessarily complicated to formalize in Coq,
and prefers a formalism where only a concretization function γ is used, like we do in Verasco.
A large part of this work is dedicated to the termination proof of fixpoint computations.
We avoid these proofs, that are not necessary for the final soundness theorem: we prefer
using the fuel trick that lets us define in Coq non-terminating functions. Finally, the main
difference between Verasco and this earlier work is the complexity of the analyzer: Verasco
targets a more complex language, C#minor; it uses a more complex combination of numer-
ical abstract domains, including relational abstractions, while the analyzer of Pichardie has
only simple non-relational numerical abstract domains such as signs, intervals and congru-
ences; and Verasco is able to infer complex memory properties, which is not possible with
the analyzers of Pichardie.
Bertot [Ber09] formalized a static analyzer based on abstract interpretation for a simple

imperative language. This analyzer can be instantiated by several non-relational abstract
domains, such as intervals or parity. It uses a weakest pre-condition calculus as the descrip-
tion of the semantics of this language. This approach is comparable to our use of a Hoare
logic for proving the soundness of our abstract iterator. The output of the analyzer is a
version of the input program annotated with logical assertions: we find this idea interesting,
and Verasco may, in the future, output such an annotated version of its input. This would
enable us to leverage the information acquired about the program during the analysis for
other purposes (such as optimizations or uses in other specialized analyzers).
Several authors prototyped static analyzers for educational purposes. Leroy [Ler12] de-

scribes a static analyzer based on abstract interpretation for a simple imperative language.
His development includes standard abstract interpretation mechanisms, such as backward
analysis of expressions and fixpoint iteration using widening and decreasing iterations. Sim-
ilarly to Verasco, the emphasis is on proving the soundness of the analysis, but no result is
guaranteed about the optimality of abstract transfer functions. As a result, no definition
of the abstraction function α is given. Another similarity with Verasco is the fact that all
the concrete domains are fixed to be powerset lattices, simplifying the definition and use in
formal proofs of the concretization function γ.
Nipkow [Nip12, NK14] describes a static analyzer based on abstract interpretation on a

simple language of annotated commands. These annotations let him conveniently define the
operational semantics, the collecting semantics and the abstract interpreter with the same
tools. As in the work by Bertot [Ber09], the output of the analyzer is an annotated version
of the input program. Nipkow describes his framework independently of the non-parametric
numerical abstract domain used and then instantiated it by sign analysis, constant prop-
agation, parity and intervals. His formalization includes fixpoint iteration with widening
and narrowing, together with their technical termination proofs.
Blazy, Laporte, Maroneze and Pichardie [BLMP13] designed, implemented and formally

verified a static analyzer based on abstract interpretation. Their implementation is the
ancestor of Verasco. Therefore, it shares many of its design decisions. A major design

44

2.3. State of the Art in Static Analysis by Abstract Interpretation

difference between this analyzer and Verasco is the fact that it targets CFG, an intermediate
language specially crafted for this purpose, instead of C#minor. This intermediate language
uses control flow graphs instead of structured syntax. Hence, they needed an external
unverified fixpoint iterator (based on Bourdoncle’s algorithm [Bou93]) in order to solve the
complex system of inequations arising from the abstract interpretation of such languages.
Their static analyzer stores in memory all the intermediate abstract states provided by the
external solver and checks that this is indeed a valid solution to the system of inequations.
Other improvements in Verasco include better abstractions of the structure of the memory,
and a more sophisticated combination of numerical abstract domain, including relational
abstract domains and a generic functor for taking into account the boundedness of integers.
Cho, Kang, Choi and Yi [CKCY13] implemented a formally verified validator, called

SparrowBerry, for the results of the analysis computed by Sparse Sparrow, an unverified
static analyzer for C. The static analysis is performed ahead of time on a CFG representation
of the input program by an unverified static analyzer. Then, their formally verified tool
checks the validity of the computed abstract values with respect to the semantics of the
program. This approach presents an important problem compared to Verasco. Indeed,
Verasco contains a large variety of abstract domains that would need to be implemented
twice: once in the unverified analyzer and once in the validator. If, as in SparrowBerry,
the abstract domain hierarchy is simple, this is feasible, but for complex hierarchies such
as the one used in Verasco, we think it would be extremely difficult to keep equivalent the
two implementations. Moreover, the memory consumption of the data structures needed to
transfer the information from the analyzer to the validator can be large, and, for structured
languages such as Verasco, it is unclear how this information could be represented at all.
Bodin, Jensen and Schmitt [BJS15] show how a formally verified static analyzer can

be automatically derived from a pretty-big step semantics of the input language. This
approach could have simplified the work needed to define the abstract iterator of Verasco
(see Section 4.3), but a pretty-big step semantics for C#minor would still be needed to be
written and formally verified, which is far from easy.
Darais and Van Horn [DVH15] give a new approach to formalize Galois connections in

verified static analyzers, that would avoid the use of classical axioms that seem unavoidable
when defining abstraction functions α3. In Verasco, the use of classical axioms is not a real
obstacle. The reason why we are not using full Galois connections is twofold: first, some
abstract domains, such as polyhedra or symbolic abstract domains, do not have abstraction
functions α, and second, the use of a fully well-behaved Galois connection setting would
assume the existence of a well-defined lattice structure on abstract values, which is far from
trivial for complex combinations of abstract domains. In Verasco, such properties, which
are important for guaranteeing some sort of optimality of the abstract transfer functions,
would be a waste of formalization effort, because the emphasis is on the soundness of the
analyzer.

3Indeed, the definition of α in a proof assistant such as Coq proses problems, because this function is most
often non-constructive.

45

II
Formally Verified Abstract

Interpretation

Chapter 3
A Modular Architecture

Before digging into the details of Verasco, we need to have a glimpse of the framework
we used for formalizing abstract interpretation together with a view of its architecture.
We explain that some adaptations to the general abstract interpretation theory are needed
for implementing realistic static analyzers in general, and for our Coq formalization in
particular. We present the general framework we use to represent abstract domains using
Coq type classes. Then, we describe the architecture of Verasco: we use a very modular
architecture, that lets us design each part independently from the others. We try to follow
a strict methodology, where each abstract domain is an implementation of an interface that
aims at being as simple as possible.

3.1. Abstract Interpretation in Practice
When it was first designed, the abstract interpretation theory was mainly a mathematical
framework without a concrete implementation [CC76, CC77, CC79]. Since then, many
static analyzers have been implemented following the approach of abstract interpretation.
While abstract interpretation is clearly a basis for these works, some adaptations need
to be made for designing a realistic static analyzer. A high-level survey of some possible
frameworks can be found in [CC92]. Astrée [BCC+03, CCF+06] also uses a relaxation, and
early works on formalizing abstract interpretation by Pichardie [Pic05] already described
many possible relaxations. Some of those are needed due to the lack of good properties of
abstract domains (such as polyhedron, which do not have best abstractions). Some others
are guided by our design strategy: proving only what is needed for the main soundness
theorem. In this section, we describe our choices, together with justifications.

3.1.1. Galois Connections and Lattice Structure
Typically, in abstract interpretation theory, concrete and abstract domains are equipped
with a lattice structure with an order relation ≤. A Galois connection is used to describe
the link between an abstract domain and a corresponding concrete domain. It consists in
two monotonic functions: α from the concrete domain to the abstract domain, and γ from
the abstract domain to the concrete domain. It is supposed to verify:

α(x) ≤ y ⇐⇒ x ≤ γ(y) (3.1)

49

Chapter 3. A Modular Architecture

The formalism of Galois connections is not practical for some realistic abstract domains:
some of them, such as polyhedra or many symbolic abstract domains, do not have best
approximations for some concrete sets. Thus, we will not be able to properly define the
abstraction function α. The complete lattice structure suffers from similar drawbacks.
Indeed, many abstract domains do not have least upper bounds and greatest upper bounds
for arbitrary families1. Moreover, from a software engineering perspective, even for abstract
domains featuring these nice properties (such as intervals), it may be desirable not to choose
best abstractions for some abstract transfer functions when the best approximation is too
complicated to compute.
The lattice and Galois connection formalisms are definitely useful to design precise ab-

stract domains. As an example, one can prove that some abstract operation is the most
precise possible for some abstract domain using the α function. However, they are not
needed for soundness: in Verasco, we decided to take the shortest path to a correct imple-
mentation with its correctness theorem. That is, for every abstract domain, we only provide
a concretization function γ, a comparison operator ⊑ and some abstract operations.

The concretization function γ

The γ function takes an element of the abstract domain and returns its corresponding
element in the concrete domain. For all the abstract domains we implemented, the cor-
responding concrete domain is a powerset lattice (i.e., the concrete domain is the set of
the subsets of a larger set, ordered by inclusion): we added this constraint to the type of
concretization functions. They are implemented using a Coq type class:

Class gamma_op (A B: Type) : Type :=
γ : A -> P B.

where P B is a notation for B -> Prop, the type of sets of elements of type B. The intuitive
meaning of γ is that for an abstract value x, the Coq term γ x corresponds to the set of
concrete values represented by x.
The use of type classes in Verasco is very frequent: this helps us keep the code easy to

read by letting Coq inferring a large amount of implicit information from the context. For
example, if x is an integer and i an interval, we simply write γ i x, or equivalently using a
dedicated notation, x ∈ γ i for stating that x belongs to i. Coq will automatically choose
the right instance of the type class to give a meaning to this statement. This is especially
useful when defining abstract domains generically.
As an example, for some abstract domain A, we define A+⊥ as A augmented with a bottom

element with empty concretization:

Inductive botlift (A:Type) : Type :=
| Bot
| NotBot (x:A).
Notation "t +⊥" := (botlift t) (at level 39).

Instance gamma_bot A B (G: gamma_op A B) : gamma_op (A+⊥) B :=
(fun x =>

match x with
| Bot => fun _ => False
| NotBot x => γ x
end).

1This is the case for many linear abstract domains: polyhedra [CH78] have least upper bounds and greatest
upper bounds only for finite families, and zonotopes do not have a binary least upper bound opera-
tor [GLGP12].

50

3.1. Abstract Interpretation in Practice

For example, Coq is able to use this instance to automatically understand the meaning of
x ∈ γ i when i has type iitv+⊥ (where iitv is the type of intervals, for which we already
have defined an instance of gamma_op).

Comparison operators

Requiring a full-fledged order relation from a lattice in each abstract domain would require
proving reflexivity, transitivity and antisymmetry. It appears that these properties are not
needed for proving the soundness of the analysis, and moreover they can be tedious to prove
(especially for transitivity), or even sometimes wrong (typically for antisymmetry). Instead,
we use a comparison operator, which is not necessarily an order relation, defined as a Coq
type class:

Class leb_op (A:Type) : Type :=
leb : A -> A -> bool.

Notation "x ⊑ y" := (leb x y) (at level 39).

The only property that is needed about ⊑ for the correctness of the analyzer is the
inclusion of concrete values (noted ⊆) when the comparison returns true:

Class leb_op_correct A B {L:leb_op A} {G:gamma_op A B} : Prop :=
leb_correct : ∀ a1 a2, (a1 ⊑ a2) = true -> (γ a1) ⊆ (γ a2).

An instance of this type class would state that, for implicitly given comparison operator and
concretization function, if the comparison operator returns true, then we have an inclusion
of the concretizations. It is worth noting that when the comparison operator is an order
relation, the instance of leb_op_correct captures exactly the monotonicity of γ.
Instances of leb_op and leb_op_correct for A can naturally be lifted to instances for A+⊥.

We do this once and for all using generic type classes instances:

Instance leb_bot (A:Type) (L:leb_op A) : leb_op (A+⊥) :=
(fun x y =>

match x, y with
| NotBot x, NotBot y => leb x y
| Bot, _ => true
| _, Bot => false
end).

Instance leb_bot_correct A B (G:gamma_op A B) (L:leb_op A) :
leb_op_correct A B -> leb_op_correct (A+⊥) B.

Proof. [...] Qed.

Join and meet

Since we do not have a proper order relation, we aim for a weak form of least upper
bounds and greatest lower bounds, sufficient for our purpose. To guarantee the soundness
of the analyzer, we only need to be able to build approximations of the concrete union and
intersection. That is, we define ⊔ and ⊓ such that, for all x and y in the abstract domain:

γ(x) ∪ γ(y) ⊆ γ(x ⊔ y) (3.2)
γ(x) ∩ γ(y) ⊆ γ(x ⊓ y) (3.3)

This is different from least upper bounds and greatest lower bounds for several reasons: first,
these statements do not claim any optimality property about ⊔ nor ⊓. This is important,
since we want to be able to define non-optimal operators when optimal ones are too tedious

51

Chapter 3. A Modular Architecture

to implement and prove sound, or even do not exist. Second, these weak requirements let
us prove the soundnesses of ⊔ and ⊓ independently from ⊑2: we will be able to define sound
join and meet operators that will be actually more precise than the hypothetical least upper
bound and greatest lower bound. This is typically the case when defining reduced products,
as is discussed is Section 3.3.
Similarly to ⊑, the operators ⊔ and ⊓ and their specifications are defined as type classes,

with Coq notations:
Class join_op (A B:Type) : Type :=

join : A -> A -> B.
Notation "x y" := (join x y) (at level 40).
Class join_op_correct A B C

{J:join_op A B} {GA:gamma_op A C} {GB:gamma_op B C} : Prop :=
join_correct : ∀ x y, (γ x) ∪ (γ y) ⊆ γ (x y).

Class meet_op (A B:Type) : Type :=
meet : A -> A -> B.

Notation "x y" := (meet x y) (at level 40).
Class meet_op_correct A B C

{J:meet_op A B} {G:gamma_op A C} {GB:gamma_op B C} : Prop :=
meet_correct : ∀ x y, (γ x) ∩ (γ y) ⊆ γ (x y).

It is worth noting that the result type of the meet and join functions need not be the
same type as their parameters. Indeed, it is often the case that we want to be able to
return an abstract value with a type with one additional ⊥ element. For example, as we
see in Section 6.2, the abstract domain of intervals has the implicit invariant that all the
manipulated abstract values are non-empty intervals of type iitv. To define meet and still
enforce this invariant, we make it return a value in iitv+⊥, but still taking parameters in
iitv to avoid considering trivial cases. We can generically handle those trivial cases by
defining instances of join_op and meet_op (and their proofs of soundness):
Instance join_bot_res A (J:join_op A A) : join_op A (A+⊥) :=

[...].
Instance join_bot_args A (J:join_op A (A+⊥)) : join_op (A+⊥) (A+⊥) :=

[...].
Instance meet_bot_args A (M:meet_op A (A+⊥)) : meet_op (A+⊥) (A+⊥) :=

[...].

Bottom and top elements

When a contradiction is deduced by an abstract domain, the contradiction has to be prop-
agated in all the abstract domains representing the same set of concrete values: this mecha-
nism is a very basic kind of abstract domain cooperation. To implement the propagation of
contradictions, we want the bottom element of abstract domains to be canonical and easily
identifiable: we use the _+⊥ types, presented earlier.
A convenient way of writing and proving code using these types is to see +⊥ as an error

monad. We use several monads in Verasco: in order to be able to define some generic
monadic constructs, we use a monad type class. This also lets us use a common do notation
à la Haskell for all our monads:
Class monad (M:Type -> Type) : Type :=

{ ret: ∀ {A:Type}, A -> M A;
bind: ∀ {A B:Type}, M A -> (A -> M B) -> M B }.

Notation "'do' X <- A ; B" :=
2In particular, we do not require x ⊑ x ⊔ y nor y ⊑ x ⊔ y, nor that z ⊑ x ⊓ y when z is an upper bound of

x and y.

52

3.1. Abstract Interpretation in Practice

(bind A (fun X => B))
(at level 200, X ident, A at level 100, B at level 200).

Then, the +⊥ monad can be defined as an error monad:

Instance monad_botlift : monad botlift :=
{ ret := NotBot;

bind A B f a :=
match a with
| Bot => Bot
| NotBot x => f x
end }.

Many algorithms in Verasco are programmed using the +⊥ monad, so a generic lemma
for proving their soundness is of great help. Assume we have to prove that a call to bind
returns a sound abstract value, that is y ∈ γ (bind a f) for some y, f and a, under the
hypothesis that a is sound, i.e., x ∈ γ a. We encounter this situation each time we have to
prove the soundness of a function using bind. We need to prove the corresponding property
on f and deduce, using the following lemma, the soundness of the call to bind:

Lemma botbind_spec {A A' B B'} {GA : gamma_op A A'} {GB : gamma_op B B'} :
∀ (f:A->B+⊥) (x:A') (y:B'),
(∀ a:A, x ∈ γ a -> y ∈ γ (f a)) ->
(∀ a:A+⊥, x ∈ γ a -> y ∈ γ (bind a f)).

The situation for top is different. We recall that ⊤ is the safe abstract value that can be
used in any case. When lattices and Galois connections are used, it is the largest abstract
value. In our situation, we use a simpler specification, stating that all concrete values are
in the concretization of ⊤. Sometimes, there is clearly an element in the abstract domain
that can be used as ⊤. For these cases, we use the following type classes and notation:

Class top_op (A:Type) : Type := top : A.
Notation "⊤" := top (at level 40).
Class top_op_correct A B {T:top_op A} {G:gamma_op A B} : Prop :=

top_correct : ∀ x, x ∈ γ (⊤).

Similarly to ⊔ and ⊓, its specification, top_op_correct, uses γ instead of actually stating
that this is a top element for ⊑.
Sometimes, there is no top element to be used in an abstract domain. In this situation

we can use the combinator +⊤, defined in a similar way as +⊥:

Inductive toplift (A: Type) :=
| All : top_op (toplift A)
| Just : A -> toplift A.
Notation "x +⊤" := (toplift x) (at level 39).

It is easy to define corresponding instances to gamma_op, meet_op, join_op, top_op, and prove
their soundnesses.
Similarly, we define standard instances of those type classes for pairs of abstract values.

Depending on the context, a pair of abstract values can either concretize to a set of pairs
of concrete values or to the intersection of the concretizations of components.

3.1.2. Widening Operator

The widening operator plays an important role when searching for invariants. As we see in
Section 4.3, they are needed for inferring loop invariants and goto invariants at the function
level.

53

Chapter 3. A Modular Architecture

The problem of finding invariants can be summarized as follows: given an abstract trans-
former F (a function transforming an abstract value into another abstract value) that rep-
resents the abstract interpretation of a loop body, find an abstract value I (the invariant),
such that:

γ(F (I)) ⊆ γ(I) (3.4)

That is, the invariant is preserved by one iteration of the loop. Additionally, we want to
take into account the initial state of the loop. That is, for some given I0, we also want:

γ(I0) ⊆ γ(I) (3.5)

Under these two constraints, finding a smaller I means better precision for the static anal-
ysis: as often, a tradeoff between precision and ease of computation has to be found. As an
example, using I = ⊤ is certainly sound and easy to compute, but mostly useless.
The typical way to solve this problem in abstract interpretation is to use a binary widening

operator ▽ and to compute the sequence defined by:{
X0 = I0

Xn+1 = Xn ▽ F (Xn)
(3.6)

where ▽ satisfies regularity properties:

∀ A B, γ(A) ⊆ γ(A ▽B) (3.7)
∀ A B, γ(B) ⊆ γ(A ▽B) (3.8)

For all sequences (Ai), the sequence (A▽
i) defined by A▽

0 = A0

and A▽
i+1 = A▽

i ▽Ai+1 is ultimately stationary. (3.9)

The property (3.7) maintains (3.5) during the iteration; (3.9) ensures that a stationary point
will be eventually reached; and (3.8) ensures that this fixpoint verifies (3.4). As a result,
this is a valid invariant.
In our quest for proof simplification, we want to minimize the number of proof obligations.

The sole purpose of (3.9) is to prove the termination of the static analyzer, which is not
essential for soundness. We do not formally prove such a property: instead, as we detail in
Section 4.3, we use the fuel technique and avoid these tedious proofs3. It is worth noting
that using fuel does not mean that termination does not hold for our abstract domains.
We have proved, on paper, that such a property holds, so that the analyzer terminates in
practice and in “paper theory”. However, this is not ensured by the formal proofs.
Similarly, it is possible to avoid the formal proof of (3.8): instead, we can use the com-

parison operator ⊑ to directly check whether (3.4) holds at each step. If, for some n, we
have F (Xn) ⊑ Xn, then we know that Xn is a valid loop invariant. We still need to check
on paper that there exists such an n. An easy solution is to enforce it when reaching a sta-
tionary point: a sufficient condition would be that, if I = I ▽ F (I), then F (I) ⊑ I ▽ F (I).
More generally without speaking of F , we check on paper the following property for our
abstract domains:

∀ A B, A = A ▽B =⇒ B ⊑ A ▽B (3.10)

This approach has another advantage: we can reach an invariant before reaching the
stationary point. In this case, the analysis takes less time and the invariant is likely to be

3Given the amount of proofs dedicated to termination in [Pic05], we believe doing so saves us substantial
amount of proof effort.

54

3.1. Abstract Interpretation in Practice

more precise.
Concerning (3.7), a simple solution to avoid its proof would be to replace F with λX.F (X⊔

I0) in the iteration (3.6). This would make (3.7) unnecessary. However, to avoid this un-
necessary join at every iteration, we decided to keep this property formalized in Coq: in
practice, proving (3.7) is not difficult, since widenings are implemented very similarly to
joins, so that a large part of these proofs can be shared with the correctness of ⊔.

Reductions after widening

A delicate problem with widening iterations is their bad behavior with respect to reduc-
tions [CCF+06, Section 6.4]. Indeed, some abstract domains use a reduction operation after
each computation. Typically, a reduction does internal deductions in an abstract domain,
and returns a refined abstract value, without changing its concretization. However, apply-
ing such a reduction after a widening can break termination. This is typically the case for
octagon closure, as explained in Antoine Miné’s PhD thesis [Min04, Section 3.7.2].
Reductions are important: they are used internally in some abstract domains (such as

octagons) and, as we see in Section 3.3, as a mean of communication between abstract
domains. A simple solution would involve forbidding reductions after widening. This is
unsatisfactory for two reasons: some abstract domains require abstract values to be always
reduced; and it would disallow abstract domains to take advantage of possibly better ex-
trapolation strategies from other abstract domains (since communications after widening
would not be possible).
We propose an original solution to the problem of loss of termination due to the use of

reductions after widening: we observe that the result of a widening operation is used in
two different places. It is used as a parameter for F , the abstract transfer function of the
loop body, and as the first parameter of the next use of the widening. There is actually
no reason to use the same values, and we propose to use two distinct abstract values. Our
widening operation returns a pair, and we write the two components of the pair as follows:

A ▽1 B = fst(A ▽B) (3.11)
A ▽2 B = snd(A ▽B) (3.12)

The first component, which should not be reduced, is used as the first parameter for the
next widening; the second component, on which reduction is allowed, is the precondition of
the loop body for this iteration. The iteration is defined as follows:{

X0 = Y0 = I0

(Yn+1, Xn+1) = Yn ▽ F (Xn)
(3.13)

We iterate this scheme until F (Xn) ⊑ Xn. Properties (3.7), (3.10) and (3.9) are transformed
into, respectively:

∀ A B, γ(A) ⊆ γ(A ▽1 B) ∧ γ(A) ⊆ γ(A ▽2 B) (3.14)
∀ A B, A = A ▽1 B =⇒ B ⊑ A ▽2 B (3.15)

For all sequences (Ai), the sequence (A▽
i) defined by A▽

0 = A0 and
A▽

i+1 = A▽
i ▽1 Ai+1 is ultimately stationary. (3.16)

where only (3.14) needs to be formally proved in Coq.

55

Chapter 3. A Modular Architecture

Widening implementation

Requiring ▽ to return a pair has one additional advantage in our implementation: it offers
the freedom of not using the same return type for ▽1 and ▽2. This can be helpful to
implement non-trivial widening strategies needing additional information about the state of
iteration. For example, one may want to implement an abstract domain that widens only
every two iterations; this is made possible by storing an additional Boolean in the type of
the first component.
To summarize, a widening operator should have type A -> B -> A*B, where A is the type

of abstract values used for the iteration state, and B is the type of abstract values used
for the analysis of program statements. An increasing function of type B -> A is needed to
initialize the iteration, effectively computing Y0 from I0. Here are the type class definitions
for widenings and their specifications:

Class widen_op (A B:Type) : Type :=
{ init_iter : B -> A;
widen : A -> B -> A * B }.

Notation "x ▽ y" := (widen x y) (at level 40).
Class widen_op_correct A B C

{W:widen_op A B} {GA:gamma_op A C} {GB:gamma_op B C} : Prop :=
{ init_iter_correct : ∀ x, γ x ⊆ γ (init_iter x);
widen_incr : ∀ (x:A) y, γ x ⊆ γ (x ▽ y) }.

In this specification, the use of γ (x ▽ y) hides a somewhat involved typeclass inference
mechanism: by using the generic instance of gamma_op for pairs, γ (x ▽ y) is interpreted as
the intersection of the concretization of the two components of x ▽ y.

3.2. Abstract Domains Hierarchy
The global hierarchy of the Verasco static analyzer is described in Figure 3.1. It is divided
into several modules that handle different features of the C programming language. Each
module implements an interface, usually an abstract domain interface, described using either
type classes or plain Coq records. An interface contains both functions (such as abstract
transfer functions) and their specifications. This methodology helps us reason about the
static analyzer, by making each module mostly independent from the others. If one would
like to modify or re-implement such a module, she would have to learn only very little about
the rest of the code.
At the top of the hierarchy, we use the CompCert compiler front-end, up to the C#minor

intermediate language. Using a CompCert intermediate language has several advantages.
First, because we share with CompCert its formal semantics, we can combine formal guar-
anties provided by Verasco together with formal guaranties provided by CompCert up to
the generated assembly code. This combination leads to a safety theorem about the gener-
ated assembly code: that is, any C#minor that passes the analysis without raising an alarm
compiles to assembly code that is free of run-time errors. This answers a common issue with
C static analyzers: the semantics of C is so subtle and contains so many implementation-
defined behaviors that it is unclear to know whether the analyzer has taken into account all
the choices (and bugs) of the compiler. For example, the evaluation order of expressions or
the memory layout of C structures may or may not be treated consistently in the analyzer
and in the compiler. The second advantage of using the CompCert front-end is to share with
CompCert the large effort of specifying and proving such a front-end. Indeed, C#minor
is free of several high-level features of the C language, such as side effects in expressions,
operator overloading, unspecified expression evaluation order, or multiple loop constructs.

56

3.2. Abstract Domains Hierarchy

Control flow

Pointers, call stack

Bounded integers

Integer & floating-point number arithmetic

Abstract interpreter OK/Alarms

State abstract domain

Z→ int

Symbolic
equalities

Non-rel.
abstraction

Non-rel.
abstraction Polyhedron Linearization Octagons ...

Congruences Intervals

Communication
channels

CompCert compiler
source −→ C → Clight → C#minor → Cminor → . . .

Figure 3.1: Verasco abstract domains hierarchy

The next component is the abstract interpreter. It iterates over the C#minor code,
inferring abstract states at every program point, and checking for run-time errors. This
component and its proofs are described in detail in Chapter 4.
The abstract states used by the abstract interpreter are computed using a state abstract

domain that concretizes to stack and memory states. It includes a points-to domain for
precisely handling pointers, an abstract domain for tracking run-time types, and some
specialized domain for tracking allocation, deallocation and memory permissions. It has
been designed, implemented and proved correct by Laporte as part of his PhD thesis [Lap15].
We do not give details about its content, and refer the reader to his dissertation instead.
However, we will have a look at its interface in Section 3.2.1.
This state abstract domain is itself parameterized by a numerical abstract domain, capa-

ble of inferring numerical properties for the program. It is decomposed into several abstract
domains, each of them handling a specific kind of properties. The whole combination is able
to infer relational properties of numerical environments, containing either bounded machine
integers or IEEE754 floating point numbers. Its interface is described in Section 3.2.2. It
is composed of an abstract domain dedicated to the handling of boundedness of machine
integers, described in Chapter 5, itself parameterized by a combination of abstract domains
dealing with floating point numbers and ideal unbounded mathematical integers. Each of
these domains share a common interface, and are combined using a special communication
system described in Section 3.3. They include an abstract domain for symbolic equali-
ties (Chapter 7); two non-relational abstract domains, intervals (Section 6.2) and integer
congruences (Section 6.3); a polyhedron abstract domain using the Verasco Polyhedral Li-
brary developed independently by Fouilhé et al. [FMP13, FB14]; a linearization abstract

57

Chapter 3. A Modular Architecture

Class mem_dom (t iter_t:Type) := {
leb_mem :> leb_op t;
join_mem :> join_op t (t+⊥);
widen_mem :> widen_op t (t+⊥);
assign:
ident -> expr -> t -> alarm_mon (t+⊥);

assign_any:
ident -> AbTy.t -> t -> alarm_mon (t+⊥);

store:
memory_chunk -> expr -> expr -> t -> alarm_mon (t+⊥);

assume:
expr -> t -> alarm_mon (t+⊥ * t+⊥);

noerror:
expr -> t -> alarm_mon unit;

deref_fun:
expr -> t -> alarm_mon (list (ident * fundef));

push_frame:
ident -> function -> list expr -> t -> alarm_mon (t+⊥);

pop_frame:
option (expr) -> option(ident) -> t -> alarm_mon (t+⊥);

ab_malloc:
expr -> option ident -> t -> alarm_mon (t+⊥);

ab_free:
expr -> t -> alarm_mon (t+⊥);

ab_memcpy:
Z -> Z -> expr -> expr -> t -> alarm_mon (t+⊥);

init_mem:
list (ident * globdef fundef unit) -> alarm_mon (t+⊥)

}.

Figure 3.2: State abstract domain interface

domain (Section 8.1); and an octagon abstract domain (Section 8.3). The non-relational
abstract domains use a common adaptation layer to make them fit the relational interface
(Section 6.1).
Every numerical abstract domain can be removed from the hierarchy, leading to a sound,

but less precise analyzer. Even though the analyzer is useless in practice without some
numerical domains such as intervals, it has better performance and still delivers reasonable
precision without some other abstract domains, such as polyhedron or octagons.

3.2.1. State Abstract Domain Interface

The state abstract domain infers properties about the stack and memory state of a program.
The implementation part of its interface is the mem_dom type class shown on Figure 3.2. As
we have mentioned in Section 3.1.2, it depends on two types for abstract values. The type
t is the usual type for abstract values, and iter_t is the type of iteration abstract states,
containing potentially non-reduced abstract values and internal state for widening iterations
strategies. This interface depends on a logging monad, alarm_mon, which tracks alarms (that
is, potential bugs in the analyzed code) that could be triggered when executing a transfer
function. This monad is another instance of the monad type class.
An instance of the mem_dom type class provides instances of leb_op, join_op and widen_op:

a comparison operator, a join operator and a widening mechanism. It also contains abstract
transfer functions for different concrete functions appearing in the C#minor semantics.
Most of them depend on the type expr of C#minor expressions. A summary of their

58

3.2. Abstract Domains Hierarchy

behavior follows:

• assign writes the result of an expression to a temporary variable;

• assign_any writes non-deterministically any value of a given type to a temporary
variable;

• store writes the result of an expression to a given memory location;

• assume returns two refinements of its input abstract state: the first one contains the
additional assumption that the expression evaluates to a non-zero value, the second
one assumes it evaluates to 0;

• noerror checks that an expression evaluate without raising an error;

• deref_fun returns the list of functions to which the result of an expression can point;

• push_frame and pop_frame handle function entry and leaving, that correspond, from
the point of view of the state abstract domain, to pushing and popping4 a frame onto
the call stack;

• ab_malloc, ab_free and ab_memcpy are transfer functions abstracting the corresponding
memory primitives;

• init_mem returns an abstract state corresponding to the state of the memory at pro-
gram start-up time, given the global definitions of the C#minor program.

The specification coming with this interface relies on its concrete domain. It is a pair of
a memory state (using CompCert memory model), and a representation of the call stack:

Definition concrete_state :=
(list (ident * (temp_env * env)) * mem)%type.

A stack frame is represented by the corresponding function identifier, and two local environ-
ments. Indeed, in C#minor, the variables in a stack frame are divided into two categories.
On the one hand, temporary variables correspond to intermediate computation and vari-
ables whose address is not taken. It is not necessary to allocate memory for them and the
CompCert back-end may store them in registers. Their values are directly stored in a map
of type temp_env. On the other hand, local variables require to be explicitly stored in mem-
ory. The stack frame contains a map of type env, relating local variable identifiers to their
addresses. Both are maps using identifiers as keys, but contain different data: temp_env
contain values, while env contain addresses in the memory.
The state abstract domain has to provide concretization functions as instances to the

gamma_op type class for both t, the type of regular abstract states and iter_t, the type of
abstract states used during iteration with widening. A generic instance of the type class
gamma_op exists for the alarm_mon monad: if some type A concretizes to some concrete type
B, then alarm_mon A concretizes to option B, where None represents an error.
Several soundness theorems are established for the different parts of the interface, as

shown in Figure 3.3. The specification of the comparison, join and widening operators relies
on previously defined type classes. The specification of abstract transfer functions rely on
concrete transfer functions, defined using the C#minor semantics. As usual in abstract

4If needed, pop_frame also performs the assignment of the given caller’s temporary variable to the returned
abstract value. This is the role of its expr and ident optional parameters.

59

Chapter 3. A Modular Architecture

Class mem_dom_spec {t iter_t: Type} (DOM: mem_dom t iter_t)
(mem_gamma: gamma_op t concrete_state)
(mem_gamma_iter: gamma_op iter_t concrete_state)

: Prop := {
leb_mem_correct:> leb_op_correct t concrete_state;
join_mem_correct:> join_op_correct t (t+⊥) concrete_state;
widen_mem_correct:> widen_op_correct iter_t (t+⊥) concrete_state;
assign_sound: ∀ x e ab,
Assign x e (γ ab) ⊆ γ (assign x e ab);

assign_any_sound: ∀ x ty ab,
AssignAny x ty (γ ab) ⊆ γ (assign_any x ty ab);

store_sound: ∀ κ dst src ab,
Store κ dst src (γ ab) ⊆ γ (store κ dst src ab);

assume_sound: ∀ e ab,
Assume e (γ ab) ⊆ γ (assume e ab);

noerror_sound: ∀ e ab,
Nonerror e (γ ab) ⊆ γ (noerror e ab);

deref_fun_sound: ∀ e ab,
DerefFun e (γ ab) ⊆ γ (deref_fun e ab);

pop_frame_sound: ∀ ret rettemp ab,
PopFrame ret rettemp (γ ab) ⊆ γ (pop_frame ret rettemp ab);

push_frame_sound: ∀ fi f args ab,
PushFrame fi f args (γ ab) ⊆ γ (push_frame fi f args ab);

malloc_sound: ∀ sz rettemp ab,
Malloc sz rettemp (γ ab) ⊆ γ (ab_malloc sz rettemp ab);

free_sound: ∀ ptr ab,
Free ptr (γ ab) ⊆ γ (ab_free ptr ab);

memcpy_sound: ∀ sz al dst src ab,
Memcpy sz al dst src (γ ab) ⊆ γ (ab_memcpy sz al dst src ab);

init_mem_sound: ∀ defs,
Init_Mem defs ⊆ γ (init_mem defs)

}.

Figure 3.3: State abstract domain specification

interpretation, they are specified as increasing functions over the lattice of concrete state
sets.
For example, given a variable identifier x, an expression e and a set of concrete states A, the

term Assign x e A denotes the set of options of possible concrete states after the assignment
of e to x from a concrete state in A. The eventuality of an error during the assignment is
represented by the fact that None ∈ Assign x e A. The soundness of the abstract transfer
function assign is then specified by the inclusion Assign x e (γ ab) ⊆ γ (assign x e ab).

3.2.2. Machine Numerical Domain Interface

An abstract domain implementing this interface infers properties about numerical environ-
ments: interactions with memory are no longer visible. In this section, concrete environ-
ments map variables to concrete numerical values, which can be either 32 bits or 64 bits
integers or floating-point numbers:

Inductive mach_num : Type :=
| MNint : int -> mach_num
| MNint64 : int64 -> mach_num
| MNfloat : float -> mach_num
| MNsingle : float32 -> mach_num.

Inductive mach_num_ty : Type :=
| MNTint
| MNTint64
| MNTfloat
| MNTsingle.

60

3.2. Abstract Domains Hierarchy

Expressions from C#minor are not adapted for this layer of the static analyzer. Indeed,
they contain memory-related operators, which are not handled by the numerical abstract
domains. Thus, we also define a new kind of expressions and their semantics: they do
not contain memory references, but still contain all the arithmetic operations of C#minor
expressions:

Inductive mexpr : Type :=
| MEvar : mach_num_ty -> var -> mexpr
| MEconst : mach_num -> mexpr
| MEunop : unary_operation -> mexpr -> mexpr
| MEbinop : binary_operation -> mexpr -> mexpr -> mexpr.

References to the environment are expressed using MEvar, through an abstract type var
of variable identifiers. They are typed: MEvar expressions are stuck if the identifier is not
bound to a value of the appropriate type in the environment. Numerical constants of any
type are represented using MEconst. Finally, unary and binary operations are factorized
through MEunop and MEbinop. They feature the same arithmetic operations as C#minor:
32 bits and 64 bits integer arithmetic and bitwise operations, single and double precision
floating-point arithmetic and conversion operators between the different types of values. To
describe floating-point values, we rely on the Flocq formally verified library [BM11], already
used in CompCert for specifying floating-point arithmetic [BJLM13, BJLM15].
The evaluation of these expressions is defined in big-step style using an inductive predi-

cate:

Inductive eval_mexpr (ρ:var -> mach_num) : mexpr -> mach_num -> Prop :=
| eval_MEvar : ∀ id i ty,

ρ id = i -> γ ty i ->
eval_mexpr (MEvar ty id) i

[...].

A notable fact is that the state abstract domain guarantees that all the expressions it
gives to the numerical layers are well typed. As a result, numerical abstract domains do not
raise alarms when encountering type errors. This simplify the code of numerical abstract
domains, but make the specification of numerical abstract domains slightly more complex.
Indeed, error can no longer be defined as stuck expressions.
As a result, to fully define the semantics of these expressions, we also have to define

erroneous expressions. This is done, again, using an inductive predicate in big-step style:

Inductive error_mexpr (ρ:var -> mach_num) : mexpr -> Prop :=
[...].

The errors tracked by this predicate are only arithmetic errors: division by zero, overflow
when converting from a floating-point type to an integer type, and overflow in the count
operand of shift expressions. This predicate does not take into account type errors, when
there is a type mismatch between a sub-expression and its use. Similarly, the environments
considered in this domain are total: there is no notion of undefined value; instead, an
undefined value is represented at this level by any numerical value.
Using these expressions, we describe the interface and specification of machine numerical

domains, as shown in Figure 3.4. Like in the previous section, we use a type class for this
purpose. It can be divided into two parts: the first one is the programmatic interface, the
second is its specification. Again, the specification depends on two concretization functions,
on both the iteration abstract type iter_t and the type of usual abstract environments t.
The programmatic interface contains type class instances for abstract domain operations:
top_op, leb_op, join_op and widen_op. It contains the abstract transfer functions assign,

61

Chapter 3. A Modular Architecture

Class ab_machine_env (t iter_t: Type) : Type := {
mach_top:> top_op (t+⊥);
mach_leb:> leb_op t;
mach_join:> join_op t (t+⊥);
mach_widen:> widen_op iter_t (t+⊥);

assign: var -> mexpr -> t -> t+⊥;
forget: var -> t -> t+⊥;
assume: mexpr -> bool -> t -> t+⊥;
get_itv: mexpr -> t -> mach_num_itv+⊥;
concretize_int: N -> mexpr -> t -> int_set+⊤+⊥;
noerror: mexpr -> t -> bool;

mach_gamma:> gamma_op t (var -> mach_num);
mach_gamma_iter:> gamma_op iter_t (var -> mach_num);

mach_top_correct:> top_op_correct (t+⊥) (var -> mach_num);
mach_leb_correct:> leb_op_correct t (var -> mach_num);
mach_join_correct:> join_op_correct t (t+⊥) (var -> mach_num);
mach_widen_correct:>
widen_op_correct iter_t (t+⊥) (var -> mach_num);

assign_correct: ∀ x e ρ n ab,
ρ ∈ γ ab ->
n ∈ eval_mexpr ρ e ->
ρ +[x => n] ∈ γ (assign x e ab);

forget_correct: ∀ x ρ n ab,
ρ ∈ γ ab ->
ρ +[x => n] ∈ γ (forget x ab);

assume_correct: ∀ e ρ ab b,
ρ ∈ γ ab ->
of_bool b ∈ eval_mexpr ρ e ->
ρ ∈ γ (assume e b ab);

get_itv_correct: ∀ e ρ ab,
ρ ∈ γ ab ->
(eval_mexpr ρ e) ⊆ γ (get_itv e ab);

concretize_int_correct: ∀ n e ρ ab,
ρ ∈ γ ab ->
(eval_mexpr ρ e ∘ MNint) ⊆ γ (concretize_int n e ab);

noerror_correct: ∀ e ρ ab,
ρ ∈ γ ab ->
noerror e ab = true ->
error_mexpr ρ e ->
False

}.

Figure 3.4: Machine numerical domain interface and specification

62

3.2. Abstract Domains Hierarchy

forget and assume and their specifications. The specifications of forget and assign use the
notation ρ +[x => n] to denote the environment ρ updated by the new binding from x to n.
Finally, it contains functions to query abstract environments. An interval for an expression
can be queried using get_itv. If possible, concretize_int returns a finite set of integers an
expression can evaluate to5. The eventuality of an arithmetic error arising when evaluating
an expression is checked using noerror.

3.2.3. Ideal Numerical Domain Interface

Compared to the previous one, this ideal numerical level of Verasco has two main differences.
First, the values we consider are simpler: they are either double precision floating-point
numbers or ideal mathematical integers (i.e., elements of Z). Second, the abstract domains
do not need to track arithmetic errors: they are checked by the functor transforming the
ideal numerical abstract domain to a machine numerical abstract domain (see Chapter 5).
This interface uses its own types for numerical values and their types:

Inductive ideal_num :=
| INf : float -> ideal_num
| INz : Z -> ideal_num.

Inductive ideal_num_ty :=
| INTz
| INTf.

We also define the type of ideal expressions, used in the whole numerical domain hierarchy.
It is very similar to the type mexpr of machine numerical expressions, except that it is
designed to compute over ideal numerical values:

Inductive iexpr : Type :=
| IEvar : ideal_num_ty -> var -> iexpr
| IEconst : ideal_num -> iexpr
| IEZitv : ZIntervals.itv -> iexpr
| IEunop : i_unary_operation -> iexpr -> iexpr
| IEbinop : i_binary_operation -> iexpr -> iexpr -> iexpr.

Typed variables are introduced with IEvar. IEconst wraps numerical constants. Non-
determinism can be introduced by IEZitv, with an interval constraint in Z. Arithmetic
operations are built by using IEunop and IEbinop. These operators include arithmetic
operations over Z and floating-point numbers, bitwise operations over Z, comparisons, and
conversions between both types.
Their semantics is defined in big-step style, using an inductive predicate:

Inductive eval_iexpr (ρ: var -> ideal_num): iexpr -> ideal_num -> Prop :=
| eval_IEvar: ∀ id i ty,

ρ id = i -> i ∈ γ ty ->
eval_iexpr (IEvar ty id) i

[...].

However, unlike machine expressions, we do not define a predicate of errors in ideal expres-
sions. Indeed, all the arithmetic errors are checked by the machine arithmetic functor, so
that ideal numerical domains only care about values of expressions when they evaluate with
no error.
The interface for ideal numerical domains is shown in Figure 3.5. It is similar to the

interface ab_machine_env shown on Figure 3.4, the major difference being that it works with
ideal numerical values instead of machine numbers. Another difference lies in the fact that
functions used to query abstract environments (e.g., get_itv in Figure 3.4) are embedded

5This is useful in the state abstract domain: when dereferencing a pointer, represented by an offset in a
block of memory, this domain needs to know the values this offset can take.

63

Chapter 3. A Modular Architecture

in a query channel provided by the idnc_get_query_chan primitive. We explain further the
contents and role of such channels in the next section.

3.3. Communication Between Numerical Abstract
Domains

Several abstract numerical domains are needed in order to be able to check non-trivial
programs without raising alarms. At one end of the spectrum, it is well known that the full
reduced product [CC79], where each domain receives the maximal amount of information
from others, is highly non-modular. It may not even exist or its computation may be
too hard in practice. At the other extreme, direct products, where each domain reasons
independently of the others are too weak; for example, in our analyzer, the interval domain
is the only numerical domain able to deal with all numerical operations (including bitwise
and floating-point operations), while other domains, such as octagons, can take advantage
of intervals. We are seeking an intermediate solution where domains can communicate
with each other, while keeping the analyzer easy to maintain from the point of view of its
programmer. It should be easy to modify the hierarchy by adding, removing or replacing
domains. Even though we do not expect the system to be as precise as the reduced product,
we need the communication mechanism itself to be easily extensible, so that the sources of

Class ab_ideal_env_nochan (t iter_t:Type) : Type := {
idnc_top:> top_op (t+⊥);
idnc_leb:> leb_op t;
idnc_join:> join_op t (t+⊥);
idnc_widen:> widen_op iter_t (t+⊥);
idnc_assign: var -> iexpr -> t -> t+⊥;
idnc_forget: var -> t -> t+⊥;
idnc_assume: iexpr -> bool -> t -> t+⊥;
idnc_get_query_chan: t -> query_chan;

idnc_gamma:> gamma_op t (var -> ideal_num);
idnc_gamma_iter:> gamma_op iter_t (var -> ideal_num);
idnc_top_correct:> top_op_correct (t+⊥) (var -> ideal_num);
idnc_leb_correct:> leb_op_correct t (var -> ideal_num);
idnc_join_correct:> join_op_correct t (t+⊥) (var -> ideal_num);
idnc_widen_correct:> widen_op_correct iter_t (t+⊥) (var -> ideal_num);
idnc_assign_correct: ∀ x e ρ n ab,
ρ ∈ γ ab -> n ∈ eval_iexpr ρ e ->
(ρ+[x => n]) ∈ γ (idnc_assign x e ab);

idnc_forget_correct: ∀ x ρ n ab,
ρ ∈ γ ab ->
(ρ+[x => n]) ∈ γ (idnc_forget x ab);

idnc_assume_correct: ∀ c b ρ ab,
ρ ∈ γ ab ->
(INz (if b then 1 else 0)) ∈ eval_iexpr ρ c ->
ρ ∈ γ (idnc_assume c b ab);

idnc_get_query_chan_correct: ∀ ab ρ,
ρ ∈ γ ab ->
ρ ∈ γ (idnc_get_query_chan ab)

}.

Figure 3.5: Ideal numerical domain interface and specification, without channels

64

3.3. Communication Between Numerical Abstract Domains

Domain A Domain B Domain C
Message Message

Queries

Broadcasted messages

Ideal numerical domains

Message

Figure 3.6: Query and message channels

imprecision can be mitigated.
We have followed some ideas of Astrée [CCF+06] to design a system of communication

channels between numerical domains. We use this system to share information between
domains modularly. Information can be either pulled by a domain from another domain
using a query, or pushed by sending a message between domains.
In this section, we explain how the domains we used are combined using a product

functor, taking two numerical abstract domains, and returning a numerical abstract domain,
containing information from both domains6. A schematic view of the whole mechanism is
depicted in Figure 3.6. Such domains use a different interface than the one presented
in Figure 3.5, and a thin adaptation layer is used at the root of the hierarchy so that it
meets the interface ab_ideal_env_nochan. We end our description by giving this internal
interface in Section 3.3.3.

3.3.1. Message Channels

Message channels provide a kind of cooperation between domains. The general idea is that
when an abstract domain assesses that some new fact may be useful to other domains,
it sends a message containing this new information. A message is an element of a Coq
inductive type, defined once and for all and shared by the whole hierarchy. It is customizable
depending on the kind of information that needs to be shared. We define a concretization
function for messages, which extends to message channels, defined as lists of messages. For
example, if we need to define one category of messages, Known_value_msg x v, stating that
the actual value of variable x is known to be v, we would write:

Inductive message : Type :=
| Known_value_msg : var -> ideal_num -> message
[...].

Instance message_gamma : gamma_op message (var -> ideal_num) :=
fun m =>
match m with
| Known_value_msg x v => fun ρ => ρ x = v

6It is worth noting that this product is not commutative: the abstract operations are computed from left
to right, and the information made available by the right component is not available when computing
the left component.

65

Chapter 3. A Modular Architecture

[...]
end.

Each abstract operator returning an abstract environment (including abstract transfer
functions and lattice operators) now also returns a message channel. Thus, we generalize
the previous types of the abstract domain primitives. For assign, the type becomes:

assign: var -> iexpr -> t -> (t * message_chan)+⊥

This assign function has the exact same specification as in Figure 3.5: when it returns a
pair (ab, chan) of an abstract environment and a message channel, its concretization is
defined – using generic type classes – as the intersection of γ(ab) and γ(chan)7.
Then, in every domain, a new primitive is implemented to process messages. The role

of this primitive is to internalize the information brought by a message given as argument
inside an abstract environment given as a second argument. Its type and specification
follow:

process_msg: message -> t -> (t * message_chan)+⊥;
process_msg_correct: ∀ m ρ ab,

ρ ∈ γ ab -> ρ ∈ γ m -> ρ ∈ γ (process_msg m ab)

It is worth noting that this function returns a message channel. While processing a message,
it can decide to forward it, refine it before forwarding, send additional messages, or even
discard it8.
In the product functor, the abstract operations are executed in order, and then the

messages produced by the first component are sent to the second component. To this end,
we first define a function that extends process_msg to message lists (i.e., messages channels),
by successively applying the process_msg function, and concatenating the returned messages
channels:

Fixpoint process_msg_list (mchan:messages_chan)
(ab:A) (accu_mchan:messages_chan) :=

match mchan with
| nil => NotBot (ab, accu_mchan)
| m::mchanq =>

do (ab', mchan') <- process_msg m ab;
process_msg_list mchanq ab' (mchan'++accu_mchan)%list

end.

This piece of code uses the do notation for the +⊥ monad defined in Section 3.1.1.
We can now define the abstract operations of the product functor. As an example, the

definition for assign is:

assign x e ab qchan :=
let '(a, b) := ab in
do (a, mchana) <- assign x e a;
do (b, mchanb) <- assign x e b;
do (b, mchan) <- process_msg_list mchana b mchanb;
ret ((a, b), mchan)

7There is no constraint on whether γ(ab) should be a subset of γ(chan). While expected to be true in practice
for most implementations of most operations, this property is wrong for typical implementations of the
process_msg operation.

8Discarding may be useful, for example, when the domain already knows this piece of information, so
the following abstract domains in the hierarchy should already have received this particular piece of
information.

66

3.3. Communication Between Numerical Abstract Domains

This way, any message produced by the first abstract domain is sent to all the following
abstract domains. This idea is applied to all the described abstract operations that return
an abstract environment: assign, join, top9…

Broadcasting messages

Note that in this setting, information cannot be propagated backwards in the chain of
domains. To address this limitation, we introduce another sort of messages, called broadcast
messages, which embed another message, and keep its concretization unchanged:
Inductive message : Type :=
[...]
| Broadcasted_msg : message -> message.

Instance message_gamma : gamma_op message (var -> ideal_num) :=
fix message_gamma m :=
match m with
[...]
| Broadcasted_msg m => message_gamma m
end.

Domains simply forward those messages without reading their contents. Then, when such
a message is returned by the last domain to the root of the hierarchy, it is unboxed and
sent back to the whole hierarchy. To ensure termination, broadcasting messages produced
during this second step are not processed at all.
Following the ideas of Section 3.1.2, the implementation of the widening operator for

products of abstract domains apply the widening on both components, but forward messages
only to the ▽2 component, so that termination properties are maintained. Its type and
implementation follow:
id_widen: iter_t -> t+⊥ -> iter_t * (t * messages_chan)+⊥;
id_widen x y :=

let '(xa, xb) := x in
let ya := do yab <- y; ret (fst yab) in
let '(ita, wa) := id_widen xa ya in
let yb := do yab <- y; ret (snd yab) in
let '(itb, wb) := id_widen xb yb in
((ita, itb),
do (a, mchana) <- wa;
do (b, mchanb) <- wb;
do (b, mchan) <- process_msg_list mchana b mchanb;
ret ((a, b), mchan))

Code maintenance for message channels

From the point of view of the code maintainer, we believe message channels are very con-
venient. They provide a simple, powerful abstraction for domain cooperation, and they
are very flexible. In order to add some new kind of communication, one can just add a
new constructor to the message type, give it a concretization, and implement and prove
correct the sender and the receiver. If removing or replacing an abstract domain is needed,
modifying the hierarchy is possible without touching the message type: the messages that
were processed by the changed domain will simply be ignored.

Messages used in Verasco

9Messages for the top operation are only provided for uniformity reasons: we do not expect them to improve
precision.

67

Chapter 3. A Modular Architecture

Inductive message : Type :=
| Fact_msg : iexpr -> bool -> message
| Known_value_msg : var -> ideal_num -> message
| Itv_msg : var -> IdealIntervals.abs -> message
| Linear_zero_msg : T_linear_expr -> message
| Congr_msg : var -> zcongr -> message
| Broadcasted_msg : message -> message.

Instance message_gamma : gamma_op message (var->ideal_num) :=
fix message_gamma m ρ :=
match m with
| Fact_msg c b =>

(INz (if b then 1 else 0)) ∈ eval_iexpr ρ c
| Known_value_msg x v =>

ρ x = v
| Itv_msg x i =>

ρ x ∈ γ i
| Linear_zero_msg le =>

eval_T_linear_expr ρ le 0
| Congr_msg x zc =>

match ρ x with
| INz v => v ∈ γ zc
| _ => False
end

| Broadcasted_msg m =>
message_gamma m ρ

end.

Figure 3.7: Messages in Verasco

The messages used in Verasco and their concretizations are listed in Figure 3.7. Here is a
summary of their uses and meaning:

• Fact_msg c b messages are a replacement for the assume primitive that is tradition-
ally used by abstract interpreters to refine an abstract environment using a Boolean
predicate, typically when entering either branch of an if statement. They are only
sent by higher layers of Verasco. They state that some Boolean expression evaluates
to a known Boolean value.

• Known_value_msg x v is emitted when a domain knows exactly the value of variable x.

• Itv_msg x i and Congr_msg x c state that variable x is in interval i or has the con-
gruence property c.

• Linear_zero_msg le states that the quasi-linear expression le evaluates to the real 0.
As we will see, the linearization domain translates some messages to those, because
they can be understood by linear numerical abstract domains.

• Broadcasted_msg m has already been mentioned.

3.3.2. Query Channels

Message channels are useful, but an additional mechanism is needed. Indeed, when a mes-
sage comes from another domain, the receiver may not be able to internalize the information
at the time of reception. For example, if the congruence domain sends a message stating
that some variable is equal to 2 modulo 5, the interval domain is not able to express this

68

3.3. Communication Between Numerical Abstract Domains

constraint using its own abstraction. Thus, in the future, if it learns that this variable lies
in the interval [2, 15], it will not be able to use the previously received congruence message
to refine it to [2, 12]. A solution would be for the interval domain to query, when needed,
the congruence information for this variable.
This example shows that sometimes, a domain may need to query another domain for

information. That is, the initiative of sharing information may come from the receiving
domain. This leads to our second kind of channels: query channels. A query channel is an
element of a record type, whose fields are functions that can be called to query information.
For example, in Verasco, some query returns the interval of values an expression may take.
Query channels come with concretization functions; informally, an environment is in the
concretization of a query channel if every query answer is valid for this environment:

Record query_chan : Type :=
{ get_itv: iexpr -> IdealIntervals.abs+⊤+⊥; [...] }.

Record query_chan_gamma (chan:query_chan) (ρ:var->ideal_num) : Prop :=
{ get_itv_correct: ∀ e, eval_iexpr ρ e ⊆ γ (chan.(get_itv) e);
[...] }.

Each domain implements a function, enrich_query_chan, which refines the answers given
by a query channel with the information contained in the abstract environment:

enrich_query_chan: t -> query_chan -> query_chan;
enrich_query_chan_correct: ∀ ab chan ρ,

ρ ∈ γ ab ->
ρ ∈ γ chan ->
ρ ∈ γ (enrich_query_chan ab chan)

When a query is issued to the returned query channel, the channel can either decide to
directly forward the query to the query channel given as argument (typically when the query
has nothing to do with the kind of information the enriching domain stores), or answer the
query directly, or a combination thereof. For example, an interval domain can forward a
get_itv query to the base channel, and then intersect the result with an interval it computes
itself.
The implementation of enrich_query_chan for products of domains is a straightforward

composition of implementations for both components. Then, to compute the query channel
associated with a hierarchy of abstract domains, it suffices to call enrich_query_chan at the
root with a dummy query channel, whose concretization is the whole concrete domain. This
way, the query will be handled first by the last domain and possibly forwarded all the way
to the first domain in the hierarchy.
In order to enable domains to use the query channel, instead of an abstract environment,

a pair of an abstract environment and a query channel is passed to abstract operations,
abstracting the same set of concrete environments. This query channel contains the contri-
bution of every abstract domains. The type of assign becomes:

assign: var -> iexpr -> t * query_chan -> (t * message_chan)+⊥;

On the other hand, when an abstract operation returns an abstract environment, an
abstract domain may want to query the other domains about the concrete states whose
abstraction is currently being computed. For example, when evaluating an abstract assign-
ment, a domain may want to query other domains about the new value of the variable. For
this reason, a query channel corresponding to the result of the operation is also given as an
argument. Note that, as not all abstract domains have computed the operation, this query
channel is partial and contains only the contributions of the domains located before in the
hierarchy. The final type and specification of the assign function follows:

69

Chapter 3. A Modular Architecture

assign:
var -> iexpr -> t * query_chan -> query_chan -> (t * message_chan)+⊥;

assign_correct: ∀ x e ρ n ab chan,
ρ ∈ γ ab ->
(ρ+[x => n]) ∈ γ chan ->
n ∈ eval_iexpr ρ e ->
(ρ+[x => n]) ∈ γ (assign x e ab chan)

Every abstract operation can be adapted similarly, except the comparison operator. With-
out query channels, its type would be t -> t -> bool, with the specification given in Sec-
tion 3.1.1 by the leb_op_correct. So, logically, with query channels, its type would be:
t * query_chan -> t * query_chan -> bool

However, the query channel for the second argument would forbid any correct non-trivial
implementation. Indeed, to prove an implementation returning true for some inputs, it
would be necessary to prove that for those inputs, the concretization of the left hand side is
included in the concretization of the query channel of the right hand side, which is impossible
without enumerating every possible query. Thus, instead, the comparison operator does not
take a query channel in its second argument:
id_leb: t * query_chan -> t -> bool
id_leb_correct: ∀ ab1_chan ab2 ρ,

id_leb ab1 ab2 = true ->
ρ ∈ γ ab1 -> ρ ∈ γ ab2

This signature can also be viewed another way: an abstract domain answers whether it is
able to deduce the properties corresponding to the right hand side from properties of the
left hand side abstract environment and query channel.
The implementation and proof of the product functor, combining both message channels

and query channels are a bit tedious, but do not present noticeable difficulties. As an
example, we give the implementation of the assign function, obtained simply by adding
query channels to the implementation given in Section 3.3.1:
assign v e ab qchan :=

let '((a, b), abqchan) := ab in
do (a, mchana) <- assign v e (a, abqchan) qchan;
let qchana := enrich_query_chan a qchan in
do (b, mchanb) <- assign v e (b, abqchan) qchana;
do (b, mchan) <- process_msg_list mchana (b, qchana) mchanb;
ret ((a, b), mchan)

Code maintenance for query channels

Similarly to message channels, query channels are very convenient. Adding a new kind
of query is easy: to this end, one has to add a field to the query_chan record, update its
concretization function, and provide a dummy implementation to be passed to the first
abstract domain of the chain. Similarly, it is robust to replacements or deletions in the
hierarchy of domains.

Queries used in Verasco

Figure 3.8 lists the different queries used in the hierarchy of numerical domains of Verasco:

• get_var_ty tries to return the type of a given variable (i.e., integer or float). It is
handled by a trivial auxiliary domain keeping track of variable types.

70

3.3. Communication Between Numerical Abstract Domains

Record query_chan : Type :=
{ get_var_ty: var -> ideal_num_ty+⊤;
get_itv: iexpr -> IdealIntervals.abs+⊤+⊥;
get_congr: iexpr -> zcongr+⊥;
get_eq_expr: var -> option ite_iexpr;
linearize_expr: iexpr -> option T_linear_expr }.

Record query_chan_gamma (chan:query_chan) (ρ:var->ideal_num) :=
{ get_var_ty_correct: ∀ v, ρ v ∈ γ (chan.(get_var_ty) v);
get_itv_correct:

∀ e, eval_iexpr ρ e ⊆ γ (chan.(get_itv) e);
get_congr_correct:

∀ e, (eval_iexpr ρ e ∘ INz) ⊆ γ (chan.(get_congr) e);
get_eq_expr_correct:

∀ x e, chan.(get_eq_expr) x = Some e ->
eval_ite_iexpr ρ e (ρ x);

linearize_expr_correct:
∀ e le, chan.(linearize_expr) e = Some le ->
∀ x, eval_iexpr ρ e x ->

∃ y, r_of_inum x = Some y /\ eval_T_linear_expr ρ le y
}.

Figure 3.8: Queries used in Verasco

• get_itv and get_congr return an interval or a congruence relation for an expression
given as parameter. They are mainly answered by the interval domain and the con-
gruence domain. The octagon domain can also answer such queries in some cases.

• As we see in Chapter 7, get_eq_expr tries to return an equivalent expression of a
given variable. It is answered by a dedicated abstract domain used, among others, to
reconstruct Boolean expressions. Answers are in a slightly different expression type,
that adds the possibility of if-then-else selector in prenex position.

• linearize_expr queries are answered by the linearization domain when linear abstract
domains (e.g., octagons) need quasi-linear forms of expressions. When possible, an
answer contains a quasi-linear expression evaluating to a real value corresponding to
the return value of the given, possibly non-linear, expression.

A notable fact is that these queries are not only made by numerical abstract domains.
The higher layers of Verasco use them when they need to get some information from
the numerical domains. Typically, the abstract domain functor of Verasco dealing with
machine-integer arithmetic will issue interval queries to analyze the overflow behavior of
some arithmetic expressions. This is the reason why query channels appear in the interface
ab_ideal_env_nochan listed in Figure 3.5.

3.3.3. Internal Interface for Numerical Abstract Domains

To conclude, we give in Figure 3.9 the final interface for numerical domains. It is very close
to the type class ab_ideal_env_nochan given in Figure 3.5. It is in fact the same interface to
which channels have been added in a systematic way. To this end, the type classes top_op,
leb_op, join_op, widen_op and their specifications have been unfolded, leading to a more
complex type class definition. However, the number and the complexity of primitives to be
implemented is actually small, leading to simple implementations of abstract domains.

71

Chapter 3. A Modular Architecture

Class ab_ideal_env (t iter_t:Type) : Type := {
id_top:
query_chan -> (t * messages_chan)+⊥;

id_leb:
t * query_chan -> t -> bool;

id_join:
t * query_chan -> t * query_chan ->
query_chan -> (t * messages_chan)+⊥;

id_init_iter:
t+⊥ -> iter_t;

id_widen:
iter_t -> (t * query_chan)+⊥ ->
query_chan+⊥ -> iter_t * (t * messages_chan)+⊥;

assign:
var -> iexpr -> t * query_chan ->
query_chan -> (t * messages_chan)+⊥;

forget:
var -> t * query_chan -> query_chan -> (t * messages_chan)+⊥;

process_msg:
message -> t * query_chan -> (t * messages_chan)+⊥;

enrich_query_chan:
t -> query_chan -> query_chan;

id_gamma:> gamma_op t (var -> ideal_num);
id_gamma_iter:> gamma_op iter_t (var -> ideal_num);
id_top_correct: ∀ chan ρ,
ρ ∈ γ chan -> ρ ∈ γ (id_top chan);

id_leb_correct: ∀ ab1 ab2 ρ,
id_leb ab1 ab2 = true -> ρ ∈ γ ab1 -> ρ ∈ γ ab2;

id_join_correct: ∀ ab1 ab2 chan ρ,
ρ ∈ γ ab1 \/ ρ ∈ γ ab2 -> ρ ∈ γ chan ->
ρ ∈ γ (id_join ab1 ab2 chan);

id_init_iter_sound: ∀ ab,
γ ab ⊆ γ (id_init_iter ab);

id_widen_incr: ∀ ab1 ab2 chan ρ,
ρ ∈ γ ab1 -> ρ ∈ γ chan -> ρ ∈ γ (id_widen ab1 ab2 chan);

assign_correct: ∀ x e ρ n ab chan,
ρ ∈ γ ab -> (ρ+[x => n]) ∈ γ chan ->
n ∈ eval_iexpr ρ e -> (ρ+[x => n]) ∈ γ (assign x e ab chan);

forget_correct: ∀ x ρ n ab chan,
ρ ∈ γ ab -> (ρ+[x => n]) ∈ γ chan -> (ρ+[x => n]) ∈ γ (forget x ab chan);

process_msg_correct: ∀ m ρ ab,
ρ ∈ γ ab -> ρ ∈ γ m -> ρ ∈ γ (process_msg m ab);

enrich_query_chan_correct: ∀ ab chan ρ,
ρ ∈ γ ab -> ρ ∈ γ chan -> ρ ∈ γ (enrich_query_chan ab chan)

}.

Figure 3.9: Internal ideal numerical domain interface and specification

72

3.3. Communication Between Numerical Abstract Domains

3.3.4. Related Work on Abstract Domains Combination
Combining abstract domains in order to get more precise abstract interpreters is not a new
idea: Cousot and Cousot proposed this idea in one of the very first papers on abstract in-
terpretation [CC79]. They described the direct product and the reduced product. However,
as we explained, neither product is adapted to our setting: direct product is not precise
enough, and reduced product is not practical, leading to non-modular, and hard to maintain
code.
The Nelson-Oppen procedure [NO79] is a decision procedure for combinations of decidable

logic theories. Several authors [CCM11, GT06] tried to adapt this method to abstract
interpretation. Compared to ours, this method has several drawbacks in the context of static
analysis. First, its theoretical foundations requires that function and predicate symbols of
both theories be disjoint (except for the equality predicate), so the only information shared
are (dis-)equalities between expressions. Second, the reduction phase used by this procedure
has a higher computational complexity. Last, because they rely on saturating the set of
shared (dis-)equalities, these methods do not include a way for an abstract domain to query
others.
Corstesi, Le Charlier and Van Hentenryck [CLCVH94] introduced the notion of open

product, which is a refinement of the direct product, based on queries. This idea is close
to our notion of query channels. However, their extension to abstract operations, with ad-
ditional query parameters, has several limitations. First, it prevents the implementation
of operations to query other domains about the result of the operation. For this kind of
communication, they rely on a refinement step after the operation. In our implementation
of the weak reduced product between intervals and congruences, implementing such a re-
finement would require us to do a query for each variable, which is not practical. Second,
their notion of query is limited, as they return only Booleans. Third, unlike in our system,
it seems like this communication system is not used for binary operations, such as join,
widening or comparison. Last, they do not provide any mean of communication on the
initiative of the sender, which our messages do.
The inspiration of our work mainly comes from the combination of domains used by the

Astrée static analyzer [CCF+06]. This analyzer features both input channels (the equiva-
lent of our query channels) and output channels (the equivalent of our message channels).
One of our main contributions is their formalization using the Coq proof assistant. Another
difference is their use of the same formalism to describe the implementation of both input
and output channels, based on two operators: EXTRACTD# and REFINED# . The opera-
tion EXTRACTD# can be seen as an equivalent to enrich_query_chan for query channels,
and REFINED# as an equivalent to process_msg for message channels. However, we do
not have a refining operation solely based on query channels, nor an operation that would
generically extract messages from an abstract environment. For the same reasons as for
refinements in open products, we believe these should be integrated in abstract operations,
and not part of the interface.

73

Chapter 4
Iterating Over the C#minor Language

The abstract interpreter of Verasco is the part of the analyzer that deals with the control flow
of the program. As explained in Chapter 3, it uses a state abstract domain as parameter so
that its main role is to apply the transfer functions of the state abstract domain according
to the syntax of the program. Before entering into the details of the implementation of
this component in Section 4.3, we have to explain the tools we use to prove properties on
C#minor programs in Section 4.1 and Section 4.2.
In Verasco, we chose not to analyze source code directly. We rather analyze the C#minor

intermediate language of CompCert. Indeed, we believe it is a good compromise between
the lack of structure of low-level languages and the complexity of high-level languages. We
describe the syntax and semantics of this language and explain this choice in Section 4.1.
The small-step operational semantics of C#minor is adapted to the simulation proofs of

CompCert, but not convenient for verifying programs in practice: at first, we investigated
the possibility of a direct proof of the abstract interpreter from the small step semantics
of C#minor; but we realized that an intermediate component, consisting in an axiomatic
semantics, closer to the interpreter structure, would make the proofs easier to understand
and maintain.
We present in Section 4.2 the axiomatic semantics we used to prove the soundness of

the abstract interpreter. This semantics uses Hoare heptuples, with two pre-conditions and
four post-conditions to state properties about statements with complex control flow, with
advanced control constructs such as gotos, exit statements or return statements anywhere
in a function.
Finally, we explain the design and proof of soundness of the abstract interpreter in Sec-

tion 4.3. We chose to define it structurally over the syntax tree of the language, rather than
finding a global fixpoint on the control flow graph. Because the control structures of the
language are quite complex, there are some peculiarities in the definition of the abstract
interpreter.

4.1. The C#minor Language

4.1.1. Syntax
C#minor is an intermediate language of the CompCert compiler: it shares some constructs
with C, but simplify many of them. Its syntax is presented in Figure 4.1. It is structured in

75

Chapter 4. Iterating Over the C#minor Language

Expressions:
e ::= t reading of a temporary variable

| &x address of a variable
| cst integer and floating-point constants
| op1(e) | op2(e, e′) arithmetic operations
| load(τ, e) memory load with size τ

Statements:
s ::= skip

| t := e assignment
| t :=?int64|float non-deterministic assignment
| store(τ, e1, e2) memory store with size τ
| t? := e(e⃗) : sig function call
| (s1; s2) sequence
| if e then s1 else s2 conditional
| switchint|int64 e stbl multiway branch
| loop s infinite loop
| block s block supporting exit
| exit n escape from the n+ 1 enclosing blocks
| L : s define label L
| goto L jump to label L
| return | return e function return

Jump tables:
stbl ::= []

| case n : s; stbl regular case
| default : s; stbl default case

Functions:
f ::= name (p⃗) : sig {

vars
−−−−→
x[size] local variables

temps t⃗ temporary variables
s function body
}

Figure 4.1: The syntax of C#minor

76

4.1. The C#minor Language

functions, statements and expressions. A program is composed of function definitions and
global variable declarations. Local variables are of two kinds: addressable (their address
can be taken with the & operator) and temporary (not resident in memory).
Expressions have no side effects: assignments, memory stores and function calls are state-

ments. The arithmetic, logical, comparison, and conversion operators are roughly those of C,
but without overloading: for example, distinct operators are provided for integer multiplica-
tion and floating-point multiplication. Likewise, there are no implicit casts: all conversions
between numerical types are explicit.
C#minor has a rich collection of control structures. They encode at a lower level the

variety of control structures of C. Like in C, they include both conditional branching (if)
and multiway branching (switch). The different kinds of loops are encoded using one simpler
infinite loop statement. Normal loop exit and special break and continue statements are
encoded into a specific block/exit construct: exit n jumps to the end of the (n + 1)-
th enclosing block statement. C#minor features goto statements, directly inherited from
C. Finally, like in C, C#minor includes a return statement with an optional expression
parameter. Such a statement can be placed anywhere in a function.
The t :=?τ construct is a non-deterministic assignment of any value of type int64 or

float. In the Coq development, it is represented by a call to a dedicated external function.
In this document, we slightly simplified the syntax of C#minor: indeed, in CompCert, it

also contains builtins and external functions. However, the Verasco interpreter most often
returns an alarm when encountering one of these. Exceptions to this rule are malloc, free,
memcpy and the Verasco-specific functions verasco_any_int64 and verasco_any_double, that
have been represented by the t :=?τ construct. The formalization of the analysis of external
functions did not cause any notable difficulty.

4.1.2. Motivation for C#minor

The front-end of CompCert performs a lot of work to compile to the C#minor language,
which is significantly easier to analyze than plain C:

• It pulls side effects out of expressions using temporary variables. This makes expres-
sions pure, and much simpler to reason about.

• It resolves overloading completely, making all arithmetic operations explicit.

• It encodes all the loop constructs of C into infinite loops and block/exit constructs.

• It removes all the sources of non-determinism except non-deterministic assignment:
in particular, it chooses an evaluation order for impure C expressions.

Why stop at C#minor and not use another, lower-level intermediate representation from
CompCert? The subsequent passes of the compiler transform the program too much and
lose important information. In particular, the local memory layout of Cminor features only
one memory block for all the local variables of a function, so it would no longer be possible
to detect overflows of local arrays. Also, an imprecision on a pointer on one variable may
result in a store operation trashing the memory of other variables, hence a large loss of
precision. Moreover, the structured control flow provided by this high-level language allows
the interpreter to follow the statement structure in the interpreter, instead of reconstructing
it using dedicated algorithms [Bou93].

77

Chapter 4. Iterating Over the C#minor Language

Values:
v ::= undef undefined value

| int n | int64 n 32-bits or 64 bits machine integer
| single f | float f 32-bits or 64-bits floating-point
| ptr b δ pointer to block b at offset δ

Program states:
S ::= S(f, s, k, ρ, E,M) regular state

| C(f, v⃗, k,M) call state
| R(v, k,M) return state

Continuations:
k ::= stop initial configuration

| (s; k) continue with s, then do as k
| endblock k leave a block, then do as k
| returnto(t?, f, ρ, E, k) return to caller

Figure 4.2: C#minor semantic objects

4.1.3. Formal Semantics

The dynamic semantics of C#minor is given in small-step style by a transition relation1

S → S′ between program states, an initial state and a set of final states. We say that a state
S is stuck or erroneous if S is not final and there is no S′ such that S → S′. A program
has an undefined semantics (i.e., “goes wrong”) when either it does not have an initial state
or when it can reach an erroneous state. That is, given the initial state S0, there exists a
sequence of states S1, . . . , Sn such that ∀ 0 ≤ i < n, Si → Si+1 and Sn is stuck.
The role of Verasco is to prove that a given program does not have an undefined semantics.

That is, if it raises no alarm, the main theorem guarantees that it has an initial state and
it cannot reach a stuck state.
Similarly to the Cminor language, whose precise description is given in [Ler09b], regu-

lar states S are composed of the definition of the function being currently executed, the
statement of interest, a continuation describing actions to be performed next, and several
environments: ρ gives in-memory addresses to local variables, E associates values to tempo-
rary variables and M is the memory state. The continuation k contains both the context of
the current statement and the current call stack. The syntax of continuations and program
states is given in Figure 4.2.
The transition relation depends on the big-step semantics for expressions, noted ρ,E,M ⊢

e ⇓ v, where the possible values v are described in Figure 4.2. We omit its definition: our
iterator mainly forwards expressions to the state abstract domain without traversing them,
so the code and proof of this part of the analyzer is mostly independent of this semantics.
We refer the interested reader to [Ler09b] for the semantics of Cminor expressions, which
is very close.
The small-step semantics of C#minor is close to the one of Cminor [Ler09b]. The differ-

ences lie in the different handling of switch statements, the squashing of the local variables
in Cminor and a few historical changes in CompCert. We describe this semantics rule by

1In fact, transitions are labeled to take into account interaction with the external world. However, this
has currently no importance for Verasco.

78

4.1. The C#minor Language

rule, trying to give insight to the reader unfamiliar with CompCert language semantics.

Assignments and store

The rules for assignments and store modify the corresponding environment according to the
result of expressions evaluations:

ρ,E,M ⊢ e ⇓ v

S(f, t := e, k, ρ, E,M)→ S(f, skip, k, ρ, E{t← v},M)
(4.1)

v has type τ

S(f, t :=?τ , k, ρ, E,M)→ S(f, skip, k, ρ, E{t← v},M)
(4.2)

ρ,E,M ⊢ e1 ⇓ ptr b δ ρ,E,M ⊢ e2 ⇓ v Mem.store(M, τ, b, δ, v) = ⌊M ′⌋
S(f, store(τ, e1, e2), k, ρ, E,M)→ S(f, skip, k, ρ, E,M ′)

(4.3)

The rule for store depends on Mem.store. This partial function is included in the CompCert
memory model [App14, Chapter 32]. If successful, it stores a given value with a given size at
a given location in the memory, and returns the resulting memory state. This can produce
an error for illegal or misaligned memory accesses.

Sequence

The rule defining the semantics of the sequence is:

S(f, (s1; s2), k, ρ, E,M)→ S(f, s1, (s2; k), ρ, E,M) (4.4)

Executing a sequence of statements amounts to executing the first statement and queuing
the second statement in the continuation. When the statement s1 terminates, i.e., reduced
to skip, it remains to execute s2 then k. This behavior is captured by a second rule:

S(f, skip, (s; k), ρ, E,M)→ S(f, s, k, ρ, E,M) (4.5)

Conditional statement

The rules for the conditional statement reduce the statement to one of its branches depend-
ing on whether the condition evaluates to 0 or a non-zero value:

ρ,E,M ⊢ c ⇓ int n n ̸= 0

S(f, if c then s1 else s2, k, ρ, E,M)→ S(f, s1, k, ρ, E,M)
(4.6)

ρ,E,M ⊢ c ⇓ int 0

S(f, if c then s1 else s2, k, ρ, E,M)→ S(f, s2, k, ρ, E,M)
(4.7)

Infinite loop

A loop statement reduces to its body, but queuing a copy of itself in the continuation, so
that it is executed again when the body ends, as described by rule (4.5):

S(f, loop s, k, ρ, E,M)→ S(f, s, (loop s; k), ρ, E,M) (4.8)

79

Chapter 4. Iterating Over the C#minor Language

Local exceptions: block and exit

Entering a block statement adds an endblock marker in the continuation to recall that a
block context was entered:

S(f, block s, k, ρ, E,M)→ S(f, s, endblock(k), ρ, E,M) (4.9)

On the one hand, if the execution of the block body terminates normally, we leave the
block, and the marker disappears:

S(f, skip, endblock(k), ρ, E,M)→ S(f, skip, k, ρ, E,M) (4.10)

On the other hand, if the execution reaches an exit statement, we unwind the continuation
until we find the right number of enclosing blocks. That is, if we encounter a sequence
continuation, we have to ignore the queued statement (this corresponds to the statements
that we are “jumping” over); if we encounter an endblock continuation, we either decrement
the counter or restart the execution at this point if the counter is 0:

S(f, exit n, (s; k), ρ, E,M)→ S(f, exit n, k, ρ, E,M) (4.11)
S(f, exit 0, endblock(k), ρ, E,M)→ S(f, skip, k, ρ, E,M) (4.12)

S(f, exit(n+ 1), endblock(k), ρ, E,M)→ S(f, exit n, k, ρ, E,M) (4.13)

Multiway branching: switch

To define the semantics of the switch statement, we first have to define two helper functions.
The first one, seq_of_tbl, converts a jump table into a regular statement, by removing labels
and using sequences:

seq_of_tbl [] = skip

seq_of_tbl(case n : s; stbl) = (s; seq_of_tbl stbl)

seq_of_tbl(default : s; stbl) = (s; seq_of_tbl stbl)

The second one, select_switchn(stbl), returns the first matching entry (and all the following
ones) for a given matched integer n, or [] if none match (and there is no default label):

select_switch_default [] = []

select_switch_default(case n : s; stbl) = select_switch_default(stbl)

select_switch_default(default : s; stbl) = (default : s; stbl)

select_switch_casen(case n : s; stbl) = ⌊case n : s; stbl⌋
select_switch_casen(case n′ : s; stbl) = select_switch_casen(stbl) if n ̸= n′

select_switch_casen(default : s; stbl) = select_switch_casen(stbl)

select_switchn(stbl) =

{
select_switch_casen(stbl) if defined
select_switch_default(stbl) otherwise

Using these functions, we can state the rule for switch: it simply reduces such a statement

80

4.1. The C#minor Language

to the matched case:

τ ∈ {int, int64} ρ,E,M ⊢ e ⇓ τ n

S(f, switchτ e stbl, k, ρ, E,M)→ S(f, seq_of_tbl(select_switchn stbl), k, ρ, E,M)
(4.14)

Unstructured control: labels and goto

Labels are ignored by the regular control flow:

S(f, L : s, k, ρ, E,M)→ S(f, s, k, ρ, E,M) (4.15)

To execute a goto statement, we first have to unwind the continuation until reaching the
base continuation for the current call frame. This is the role of the call_cont function:

call_cont(s; k) = call_cont(k)

call_cont(endblock(k)) = call_cont(k)

call_cont(k) = k otherwise

After this unwinding, we find in the current function the statement to be executed together
with a continuation describing its context, so that the same continuation is used for a
given statement when entering it normally or via a goto. The find_label partial function
computes the new statement and continuation2:

find_label(L, (s1; s2), k) =

{
find_label(L, s1, (s2; k)) if defined
find_label(L, s2, k) otherwise

find_label(L, if e then s1 else s2, k) =

{
find_label(L, s1, k) if defined
find_label(L, s2, k) otherwise

find_label(L, switchτ e stbl, k) = find_label(L, seq_of_tbl(stbl), k)

find_label(L, loop s, k) = find_label(L, s, (loop s; k))

find_label(L, block s, k) = find_label(L, s, endblock(k))

find_label(L,L : s, k) = ⌊s, k⌋
find_label(L,L′ : s, k) = find_label(L, s, k) when L ̸= L′

Using these definitions, the rule for goto is:

find_label(L, f.body, call_cont(k)) = ⌊s′, k′⌋
S(f, goto L, k, ρ, E,M)→ S(f, s′, k′, ρ, E,M)

(4.16)

Function call and initial state

Calling a function is a rather complex operation: the machine has to evaluate the function
pointer, dereference it and check that the signature matches, then evaluate the parameters
and finally setup the new frame of the called function. Moreover, a part of this logic (but
not all of it) is common with the setup of the context of the main function. To avoid
duplication, in many CompCert languages, this process is divided into two steps. The

2In order to keep this definition structurally recursive in the Coq development, the definition of seq_of_tbl is
inlined, making find_label a mutually recursive definition. We give here a simpler, equivalent definition.

81

Chapter 4. Iterating Over the C#minor Language

first step corresponds to the computation made in the caller context, while the second step
corresponds to the setup of the new stack frame in the context of the callee.
More precisely, the first step evaluates and dereferences the function pointer, checks the

signature and evaluates the parameters. It ends in a special “call state” denoted using C
(cf. Figure 4.2).

ρ,E,M ⊢ e ⇓ ptr b 0 ρ,E,M ⊢ e⃗ ⇓ v⃗ funct(b) = ⌊f ′⌋ f ′.sig = sig

S(f, t? := e(e⃗) : sig, k, ρ, E,M)→ C(f ′, v⃗, returnto(t?, f, ρ, E, k),M)
(4.17)

The funct function searches the global environment for the definition of the function at the
given memory address.
The second step consists in setting up the new environment of the called function. It

first checks there is no name clashes in the local and temporary variables and parameters.
It allocates one block of memory for each local variable, and sets up the environment of
temporary variables with undefined values and parameter values. This whole process is
complex and mostly handled by the state abstract domain, so we do as if there were a
partial function env_setup, whose definition is not shown, that does all this work. The
second rule is:

env_setup(f, v⃗,M0) = ⌊ρ,E,M⌋
C(f, v⃗, k,M0)→ S(f, f.body, k, ρ, E,M)

(4.18)

The initial state of the program depends on a main function and an initial memory Minit,
that are both defined by CompCert. Given those, the initial state is C(main, nil, stop,Minit).

Function return and final states

Similarly, the process of returning from a function is decomposed into two steps. The first
one evaluates the return value and frees the local variables; the second one returns to the
calling context, optionally assigning the return value to a temporary variable.
The first step can be divided into three cases, leading to three different rules: either

the function returns after having reached the end of its body, or it returns with a return
statement without a parameter, or it returns with a return statement with a parameter.
The three rules are:

Mem.free_env(ρ,M) = ⌊M ′⌋ k = stop ∨ k = returnto(. . .)

S(f, skip, k, ρ, E,M)→R(undef, k,M ′)
(4.19)

Mem.free_env(ρ,M) = ⌊M ′⌋
S(f, return, k, ρ, E,M)→ R(undef, call_cont(k),M ′)

(4.20)

ρ,E,M ⊢ e ⇓ v Mem.free_env(ρ,M) = ⌊M ′⌋
S(f, return e, k, ρ, E,M)→ R(v, call_cont(k),M ′)

(4.21)

The second step is much simpler:

R(v, returnto(t?, f, ρ, E, k),M)→ S(f, skip, k, ρ, E{t? ← v},M) (4.22)

It simply models the return to the calling context stored in the continuation, and, optionally,
the assignment of the temporary with the return value.
The valid final states are those of the form R(int r, stop,M), where r is the return status

of the program.

82

4.2. An Axiomatic Semantics for C#minor

Quasi-determinism

A key property of this semantics is that the only source of non-determinism is the non-
deterministic assignment t :=?τ . It is essential for the proof technique used in CompCert.
It also simplifies many aspects of the axiomatic semantics of C#minor.

Theorem 4.1.1 (Determinism of C#minor expressions). Let ρ, E, M be respectively a
local environment, a temporary environment and a memory state. Let e be a C#minor
expression and v1 and v2 values such that ρ,E,M ⊢ e ⇓ v1 and ρ,E,M ⊢ e ⇓ v2. Then
v1 = v2.

Theorem 4.1.2 (Determinism of C#minor). There is only one initial state. Moreover, let
S be a C#minor state and S1 and S2 two states such that S → S1 and S → S2. Suppose S
is not of the form S(f, t :=?τ , k, ρ, E,M). Then S1 = S2.

4.2. An Axiomatic Semantics for C#minor

As explained earlier, an axiomatic semantic is more convenient than an operational semantic
for verifying programs in practice. This is the reason why we designed an axiomatic seman-
tics for C#minor. We first present the semantics itself by giving the rules allowing proving
programs. Then we give its properties, together with their proof sketches. These properties
include the soundness of the program logic with respect to the operational semantics, as well
as deduction principles such as consequence rules, generalized conjunction and disjunction
rules, and lemmas for proving loop unrolling and decreasing iterations techniques.

4.2.1. Semantic Rules

Because C#minor contains many advanced control structures, this logic has a complex
structure: in general, there are two kinds of ingoing control flows and four kinds of outgoing
control flows. Indeed, a statement can be entered either normally or using a goto statement
to a label in the statement. On the other hand, a statement can be exited either normally,
using a goto statement, using a return statement, or using an exit statement.
As a result, instead of traditional Hoare triples, we use Hoare “heptuples”, with two pre-

conditions and four post-conditions. This technique has already been used, for example,
by Appel and Blazy in the context of the Cminor intermediate language [AB07]. In our
setting, the Hoare judgment depends on an environment for local variables noted ρ (from
local variable identifiers to memory cells). Its general form is as follows:

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.23)

The logical predicates P [E,M], Plbl[L,E,M], Q[E,M], Qret[v,M], Qexit[n,E,M] and
Qgoto[L,E,M] depend on the variables between brackets. Here, E represents an environ-
ment for temporary variables (from temporary variable identifiers to values), M represents
a memory state, L a label, v a value and n a natural integer.
Similarly, we have a Hoare judgment for functions:

⊢ {P} f {Q} (4.24)

In this judgment, P [v⃗,M] depends on the memory and on the values of parameters, while
Q[v,M] depends on the memory and on the return value of the function.

83

Chapter 4. Iterating Over the C#minor Language

As we explain later, a third judgment, specific to jump tables, has four pre-conditions
and four post-conditions. In Coq, the Hoare judgment for statements, the Hoare judgment
for functions and the Hoare judgment for jump tables are defined using three large mutual
coinductive types. Coinductiveness makes it possible to build proofs for recursive programs.
Even if Verasco does not use this feature of the semantics, we think this is an interesting
feature. We use Coq predicates directly for pre- and post-conditions: for example, the
pre-condition Plbl is a Coq term of type ident -> temp_env -> mem -> Prop.
It is worth noting that the semantics does not include the consequence rule itself. Instead,

we prove that it is admissible given the other rules. Indeed, using the consequence rule in a
coinductive setting would be unsound: it allows proving any specification for any program.

The skip statement

The rule for the skip statement simply states that the normal pre-condition should imply
the normal post-condition:

P ⇒ Q

ρ ⊢
{

P
lbl→ Plbl

}
skip

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.25)

A simpler rule would be to use the same predicate for P and Q, and replace other pre-
and post-conditions with ⊤ and ⊥, respectively. However, this additional level of generality
is needed to prove the consequence rule.

Assignments and store

The rules for assignments and store are built such that the precondition both implies that
the expressions will evaluate without error and that the postcondition will hold after the
operation:

∀EM, P [E,M] =⇒
[
∃v, ρ, E,M ⊢ e ⇓ v
∧ Q[E{t← v},M]

ρ ⊢
{

P
lbl→ Plbl

}
t := e

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.26)

∀EM, P [E,M] =⇒ ∀v : τ, Q[E{t← v},M]

ρ ⊢
{

P
lbl→ Plbl

}
t :=?τ

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.27)

∀EM, P [E,M] =⇒

∃bδv2M ′, ρ, E,M ⊢ e1 ⇓ ptr b δ

∧ ρ,E,M ⊢ e2 ⇓ v
∧ Mem.store(M, τ, b, δ, v) = ⌊M ′⌋
∧ Q[E,M ′]

ρ ⊢
{

P
lbl→ Plbl

}
store(τ, e1, e2)

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.28)

It is worth noting that this formulation of the rules is simplified by the determinism of the
semantics of C#minor expressions. Otherwise, we would have to separately state that the

84

4.2. An Axiomatic Semantics for C#minor

postcondition holds for any evaluation of expressions.

Sequence

The rule for the sequence is inspired from usual Hoare logic: the normal post-condition
of the first statement is the normal pre-condition of the second statement. All the other
predicates are shared:

ρ ⊢
{

P
lbl→ Plbl

}
s1

{
R ret→ Qret

exit→ Qexit goto→ Qgoto

}
ρ ⊢

{
R

lbl→ Plbl

}
s2

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{

P
lbl→ Plbl

}
(s1; s2)

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.29)

Conditional

Conditional statements are treated similarly:

ρ ⊢
{

P1

lbl→ Plbl

}
s1

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
ρ ⊢

{
P2

lbl→ Plbl

}
s2

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

∀EM, P [E,M] =⇒

∃n, ρ,E,M ⊢ e ⇓ int n

∧ n ̸= 0⇒ P1[E,M]

∧ n = 0⇒ P2[E,M]

ρ ⊢
{

P
lbl→ Plbl

}
if e then s1 else s2

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.30)

Again, we use the determinism of C#minor expressions in order to avoid quantifying over
all the possible evaluations of the condition.

Infinite loop

Like in any axiomatic semantic, proving a Hoare tuple for an infinite loop involves providing
an invariant I, implied by the pre-condition:

ρ ⊢
{

I
lbl→ Plbl

}
s

{
I ret→ Qret

exit→ Qexit goto→ Qgoto

}
P ⇒ I

ρ ⊢
{

P
lbl→ Plbl

}
loop s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.31)

The control flow cannot escape normally from a loop statement: therefore, an arbitrary
post-condition Q can be used.

85

Chapter 4. Iterating Over the C#minor Language

Local exceptions: block and exit

The rule for block injects the normal post-condition into the exit post-conditions, after
having shifted exit post-conditions by one:

ρ ⊢
{

P
lbl→ Plbl

}
s

 Q ret→ Qret

exit→ λn.

[
Q if n = 0
Qexit[n− 1] if n > 0

]
goto→ Qgoto

ρ ⊢

{
P

lbl→ Plbl

}
block s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.32)

The rule for the exit n statement imposes an implication between the pre-condition and
the exit post-condition:

P ⇒ Qexit[n]

ρ ⊢
{

P
lbl→ Plbl

}
exit n

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.33)

Unstructured control: labels and goto

Similarly to exit and block, the specification for a labeled statement is a matter of plumbing
between the normal pre-condition, the lbl pre-condition and the goto post-condition:

ρ ⊢
{
Plbl[L] ∨ P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{

P
lbl→ Plbl

}
L : s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.34)

P ⇒ Qgoto[L]

ρ ⊢
{

P
lbl→ Plbl

}
goto L

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.35)

Multiway branching: switch

The rule for the switch statement depends on a third Hoare judgment for jump tables. There
are many ways of entering into a partial jump table: either by a label, or by falling through
from the previous case, or by jumping to a case label or by jumping to a default label.
Thus, in this judgment, we have four pre-conditions and the usual four post-conditions. Its
general form is as follows:

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.36)

This new judgment has its own inference rules, one for each constructor of jump ta-
bles. They use the same ideas as the one we already presented, hence we omit detailed

86

4.2. An Axiomatic Semantics for C#minor

explanations:

Pdef ⇒ Q Pft ⇒ Q

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
[]

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.37)

ρ ⊢
{
Pcase[n] ∨ Pft

lbl→ Plbl

}
s

{
R ret→ Qret

exit→ Qexit goto→ Qgoto

}
ρ ⊢

{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ R

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
case n : s; stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.38)

ρ ⊢
{
Pdef ∨ Pft

lbl→ Plbl

}
s

{
R ret→ Qret

exit→ Qexit goto→ Qgoto

}
ρ ⊢

{
case→ Pcase def→ ⊥
lbl→ Plbl ft→ R

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
default : s; stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.39)

The rule for the switch statement follows:

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ ⊥

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

∀EM, P [E,M] =⇒

∃n, ρ,E,M ⊢ e ⇓ τ n

∧ Pcase[n,E,M]

∧ select_switch_casen stbl = ∅ ⇒ Pdef [E,M]

ρ ⊢
{

P
lbl→ Plbl

}
switchτ e stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.40)

Returning from a function

Returning from a function by reaching the end of its body is directly handled by the rule
for functions. For return statements, we use two dedicated rules that relate the normal
ingoing control flow with the ret outgoing control flow:

∀EM, P [E,M] =⇒
[
∃M ′ Mem.free_env(ρ,M) = ⌊M ′⌋
∧ Qret[undef, E,M ′]

ρ ⊢
{

P
lbl→ Plbl

}
return

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.41)

87

Chapter 4. Iterating Over the C#minor Language

∀EM, P [E,M] =⇒

∃vM ′, ρ, E,M ⊢ e ⇓ v

∧ Mem.free_env(ρ,M) = ⌊M ′⌋
∧ Qret[v,E,M ′]

ρ ⊢
{

P
lbl→ Plbl

}
return e

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.42)

Function call

Just like in the operational semantics, our axiomatic semantics decompose function call and
return into two parts. The first part concerns only the calling process from the point of view
of the caller. It uses the Hoare triple for the called function in the premise, and contains
the Hoare tuple for the call statement as a conclusion:

∀EM, P [E,M]
⇓

∃bv⃗f, ρ, E,M ⊢ e ⇓ ptr b 0

∧ ρ,E,M ⊢ e⃗ ⇓ v⃗

∧ funct(b) = ⌊f⌋ ∧ f.sig = sig

∧ ⊢ {λv⃗′M ′. v⃗′ = v⃗ ∧M ′ = M} f {λv′M ′. Q[E{t? ← v′},M ′]}

ρ ⊢
{

P
lbl→ Plbl

}
t? := e(e⃗) : sig

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

} (4.43)

A second rule builds the specification of a function from specifications of its body. Not
only it needs to take into account the function call and return process, but it also needs to
make sure that pre- and post-conditions for special control flow are coherent. Namely, it
ensures that the ingoing lbl control flow meets the outgoing goto control flow, that there
is no jump to an unknown label, and that no exit statement will escape the function:

∀v⃗M0, P [v⃗,M0]
⇓

∃ρEMI, env_setup(f, v⃗,M0) = ⌊ρ,E,M⌋
∧ (∀LEM ′k, I[L,E,M ′]⇒ find_label(L, f.body, k) is defined.)
∧ let Qret[E

′,M ′] :=
∃Mret, Mem.free_env(ρ,M ′) = ⌊Mret⌋ ∧ Q[undef,Mret]

in

ρ ⊢
{
λE′M ′. E′ = E ∧M ′ = M

lbl→ I

}
f.body

{
Qret ret→ Q

exit→ ⊥ goto→ I

}
⊢ {P} f {Q}

(4.44)

4.2.2. Consequence Rules

As usually in Hoare logic, the consequence rule allows us to weaken the post-condition
and strengthen the pre-condition of a given judgment. In our setting, this rule is not
part of the system, but can be deduced from others, by rewriting the whole proof of the
judgment. There is one version for each three judgment, and they are all proved by mutual
coinduction without any hidden difficulties. Moreover, given the large numbers of pre-

88

4.2. An Axiomatic Semantics for C#minor

and post-conditions, we have two separate sets of rules: one for pre-conditions and one for
post-conditions:

Theorem 4.2.1 (Consequence rules for statements). The following rules are admissible:

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
P ′ ⇒ P P ′lbl ⇒ Plbl

ρ ⊢
{

P ′

lbl→ P ′lbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}·· (4.45)

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
Q⇒ Q′ Qret ⇒ Q′ret Qexit ⇒ Q′exit Qgoto ⇒ Q′goto

ρ ⊢
{

P ′

lbl→ P ′lbl

}
s

{
Q′ ret→ Q′ret

exit→ Q′exit goto→ Q′goto

}··· (4.46)

Theorem 4.2.2 (Consequence rules for functions). The following rules are admissible:

⊢ {P} f {Q} P ′ ⇒ P

⊢ {P ′} f {Q}
··· (4.47)

⊢ {P} f {Q} Q⇒ Q′

⊢ {P} f {Q′}
··· (4.48)

Theorem 4.2.3 (Consequence rules for jump tables). The following rules are admissible:

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
P ′case ⇒ Pcase P ′def ⇒ Pdef P ′lbl ⇒ Plbl P ′ft ⇒ Pft

ρ ⊢
{
case→ P ′case def→ P ′def
lbl→ P ′lbl ft→ P ′ft

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}··· (4.49)

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
Q⇒ Q′ Qret ⇒ Q′ret Qexit ⇒ Q′exit Qgoto ⇒ Q′goto

ρ ⊢
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
stbl

{
Q′ ret→ Q′ret

exit→ Q′exit goto→ Q′goto

}··· (4.50)

4.2.3. Conjunction and Disjunction Rules

Conjunction and disjunction rules are used in the proof of the fixpoint iterator for loops
and gotos (especially for proving the validity of loop unrolling and of the decreasing phase).

89

Chapter 4. Iterating Over the C#minor Language

Recall the standard conjunction and disjunction rules from the literature:

⊢ {P1} S {Q1} ⊢ {P2} S {Q2}

⊢ {P1 ∧ P2} S {Q1 ∧Q2}
···

⊢ {P1} S {Q1} ⊢ {P2} S {Q2}

⊢ {P1 ∨ P2} S {Q1 ∨Q2}
···

However, it can be noted that with the consequence rules, these rules are derivable from
simpler ones, where pre- or post-conditions are kept equal:

⊢ {P} S {Q1} ⊢ {P} S {Q2}

⊢ {P} S {Q1 ∧Q2}
··

⊢ {P1} S {Q} ⊢ {P2} S {Q}

⊢ {P1 ∨ P2} S {Q}
···

For the sake of generality, we proved more general rules, where the disjunction is replaced
with an existential quantification over an arbitrary type and conjunction is replaced with
an universal quantification over an arbitrary inhabited type3. These more general rules in
the context of the Hoare statement for functions is proved by the following theorem:

Theorem 4.2.4 (Conjunction and disjunction rules for functions). The following rules are
admissible4:

∀x : T, ⊢ {P} f {Q(x)} ∃x : T,⊤

⊢ {P} f {
∧

x:T Q(x)}
·· (4.51)

∀x : T, ⊢ {P (x)} f {Q}

⊢ {
∨

x:T P (x)} f {Q}
··· (4.52)

Note that, for the generalized conjunction rule, the constraint stating that T is inhabited
is important. Indeed, if used with an empty type, we would have the triple ⊢ {P} f {⊤} for
any function f and predicate P . This is clearly wrong, because, as we will see, our Hoare
tuples ensure the safety of programs, which may not be enforced by P .
We have similar rules for statements:

Theorem 4.2.5 (Conjunction and disjunction rules for statements). The following rules
are admissible:

∀x : T, ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q(x) ret→ Qret(x)

exit→ Qexit(x) goto→ Qgoto(x)

}
∃x : T,⊤

ρ ⊢
{

P
lbl→ Plbl

}
s

{ ∧
x:T Q(x) ret→

∧
x:T Qret(x)

exit→
∧

x:T Qexit(x) goto→
∧

x:T Qgoto(x)

}·· (4.53)

∀x : T, ρ ⊢
{

P (x)
lbl→ Plbl(x)

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{ ∨

x:T P (x)
lbl→

∨
x:T Plbl(x)

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}·· (4.54)

First proof attempt

The first idea that comes to mind to prove these statements is by “merging” the proof trees
of the premises. That is, by coinduction, we build a proof tree for the conclusion, using

3The less general rules are obtained by taking T = bool.
4We used the notations

∧
x:T Q(x) for ∀x :T, Q(x) and

∨
x:T P (x) for ∃x :T, P (x).

90

4.2. An Axiomatic Semantics for C#minor

as pre- and post-condition the conjunction (or disjunction) of the predicates used in the
proof trees of the premises. However, such a proof method turned out to be harder than
expected: indeed, some sort of axiom of choice is needed5.
In order to understand why this proof uses the axiom of choice, let us try to handle the

case of a sequence statement (s1; s2) for the disjunction rule (4.54). We assume the rule has
been proved for s1 and s2, and try to prove it for (s1; s2). We have the following:

∀x : T, ρ ⊢
{

P (x)
lbl→ Plbl(x)

}
(s1; s2)

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.55)

and (4.54) for s1 and s2. We want to prove:

ρ ⊢
{ ∨

x:T P (x)
lbl→

∨
x:T Plbl(x)

}
(s1; s2)

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.56)

The idea would be to use the rule for the sequence (4.29), and use a combination of the
coinduction hypotheses and of the consequence rules as premises. However, the question
of which intermediate predicate R to use in (4.29) is tricky. Intuitively, we would want to
take the disjunction of all the Rs used in the proof trees given by (4.55) (which necessarily
use (4.29) at their head). However, this would need to extract computationally a predicate
R for each x, or, equivalently, a function that returns R if given x. The existence of such an
informational function from the family of non-informational proof trees can only by proved
using the axiom of choice. The same problem appears for all the constructs where the proof
tree is not syntax-directed, and both for the conjunction and disjunction rules.

Proof sketch

In the previous proof attempt, we were unable to apply the rule for the sequence because
of the lack of a predicate that would be both a pre-condition for s2 and a post-condition
for s1. There is, however, a simple candidate. Indeed, for a given set of post-conditions for
a statement s, there is a weakest pre-condition for which the Hoare tuple is valid. Usually,
this pre-condition is built syntactically, but we have a simple semantic way of building it,
using higher order logic: it is the disjunction of all the valid pre-conditions.
More formally, let Q, Qret, Qexit and Qgoto be post-conditions. We note H(P, Plbl) the

predicate defined as:

H(P, Plbl) ≡ ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.57)

We define Pwp as:
Pwp ≡

∨
P | H(P,⊥)

P (4.58)

or equivalently, using only the logical constructs available in Coq:

Pwp[E,M] ≡ ∃P, H(P,⊥) ∧ P [E,M] (4.59)

5In Verasco, we are not a priori against the idea of using such an axiom. However, we have another proof
of this theorem that does not uses it; and, at the time we proved it, we did not figured out that the
axiom of choice could actually solve the issue we are discussing here.

91

Chapter 4. Iterating Over the C#minor Language

Similarly, we define Pwp
lbl :

Pwp
lbl [L,E,M] ≡ ∃Plbl, H(⊥, Plbl) ∧ Plbl[L,E,M] (4.60)

Those ideas can also be used for the preconditions of the other two Hoare judgments.
Suppose now that we could prove these predicates are valid pre-conditions:

ρ ⊢
{

Pwp

lbl→ Pwp
lbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.61)

The generalized disjunction rule (4.54) follows immediately using the consequence rule for
preconditions. As an example, for the normal pre-condition, it suffices to prove:∨

x:T

P (x) =⇒ Pwp (4.62)

which is immediate by using P (x) as a witness and reapplying the consequence rule.
We prove (4.61) and the other analog lemmas for functions and jump tables by mutual

coinduction with a slightly stronger coinduction hypothesis. Namely, we prove by coinduc-
tion that any pair of pre-conditions that implies Pwp and Pwp

lbl are valid. Rephrasing, we
prove by coinduction that the following rule is admissible:

P ⇒ Pwp Plbl ⇒ Pwp
lbl

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}·· (4.63)

We sketch the proof only for the sequence and loop cases:

• For the sequence case s = (s1, s2), we apply the sequence rule, using the weakest pre-
condition of s2 as intermediate predicate. The two premises of the sequence rule are
proved using the coinduction hypotheses. It remains to prove the premises of the coin-
duction hypotheses: they are easily deduced from the premises and the consequence
rules.

• For the loop s case, we apply the loop rule, using the weakest invariant that allows
deducing the post-conditions. This invariant is defined similarly to Pwp. We then use
the coinduction hypothesis and prove its premises using the consequence rules.

The proof of the conjunction rule is dual: instead of building the weakest pre-conditions,
we build the strongest post-conditions and prove similar lemmas by coinduction. Note,
however, that we need to make sure the precondition is strong enough to ensure at least
the safety of the statement. For this reason, the dual of (4.63) has an additional hypothesis
stating that the pre-conditions are valid for a dummy post-condition:

Q⇒ Qsp Qret ⇒ Qsp
ret Qexit ⇒ Qsp

exit Qgoto ⇒ Qsp
goto

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q0 ret→ Q0

ret

exit→ Q0
exit goto→ Q0

goto

}

ρ ⊢
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}··· (4.64)

This new premise becomes the inhabitedness premise of (4.51).

92

4.2. An Axiomatic Semantics for C#minor

4.2.4. Loop Unrolling and Decreasing Iterations

Loop unrolling and decreasing iterations are used in Section 4.3.3 to improve the precision
of the analysis of loops. They cannot be directly handled using the reasoning rule for infinite
loops (4.31), because both reasoning schemes consists in using a different invariant.
Basically, loop unrolling consists in stating that loop s and (s; loop s) are equivalent, and

proving a Hoare tuple for (s; loop s). This reasoning method is actually admissible in our
logic:

Theorem 4.2.6 (Loop unrolling). The following rule is admissible:

ρ ⊢
{

P
lbl→ Plbl

}
s

{
R ret→ Qret

exit→ Qexit goto→ Qgoto

}
ρ ⊢

{
R

lbl→ ⊥

}
loop s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

ρ ⊢
{

P
lbl→ Plbl

}
loop s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}·· (4.65)

This theorem is actually a bit stronger than stating that loop s and (s; loop s) are
equivalent, because we can use ⊥ instead of Plbl as a precondition for loop s in the premise.
Its proof is a straightforward use of (4.31) and of the disjunction rule on the loop body:

it suffices to use R ∨ I instead of I as loop invariant.
The decreasing iterations scheme is the dual of loop unrolling: instead of giving a separate

proof for the first iterations, we give a separate proof for the last iterations. However, there
is no way, in the syntax of C#minor, to distinguish the last iteration of a loop. For this
reason, the statement of this theorem is more complex. It uses a notion of unstable invariant,
which is true at every iteration but not necessarily strong enough to be stable. Formally,
given a statement s and a local environment ρ, we say that I is an unstable invariant for
pre- and post-conditions P , Plbl, Qret, Qexit and Qgoto, if there exists a predicate J such
that J ⇒ I, P ⇒ J , and:

ρ ⊢
{

J
lbl→ Plbl

}
s

{
J ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.66)

The reason for introducing this notion is that unstable invariants can be extended by one
iteration of the loop:

Lemma 4.2.7. If I is an unstable invariant for P , Plbl, Qret, Qexit and Qgoto, and the
following Hoare judgment is derivable:

ρ ⊢
{

I
lbl→ Plbl

}
s

{
I ′ ret→ Q′ret

exit→ Q′exit goto→ Q′goto

}
(4.67)

then, I ′ is an unstable invariant for P , Plbl, Q′ret, Q′exit and Q′goto.

The proof of this result is a use of the consequence rules and of the conjunction rule with
J ∧ I ′.
The following lemma can be used at the end to build the Hoare judgment for loop s:

Lemma 4.2.8. If there exists an unstable invariant for P , Plbl, Qret, Qexit and Qgoto, then

93

Chapter 4. Iterating Over the C#minor Language

the following Hoare judgment is derivable (for any Q):

ρ ⊢
{

P
lbl→ Plbl

}
loop s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}
(4.68)

Its proof is a trivial unfolding of definitions. Similar ideas can be used at the function
level for invariants for labels, but they involve more complex definitions, which we omit
here.

4.2.5. Soundness of the Hoare Logic

To prove the soundness of our set of rules, we define, for each of its three judgments, a
semantic counterpart, defined in term of the operational semantics6. The Hoare judgments,
denoted by ⊢, imply the semantic counterpart, denoted by ⊨n. Then, from the seman-
tic judgment for the main function, we deduce a whole-program safety theorem expressed
directly in terms of the operational semantics.
A key point is that the final aim of such a judgment is only to prove the safety of the

program. To that end, we first define a safe predicate, stating that some state will not go
into an erroneous state after any number of steps:

safe S ≡ ∀S′, ¬(S →∗ S′ ∧ S′ is stuck) (4.69)

We begin with the semantic Hoare judgment for functions, and we will deduce analogously
those for statements and jump tables. The semantic counterpart for a function f states the
safety of any call state of the form C(f, v⃗, k,M) under the hypothesis that v⃗ and M verify
the pre-condition. This is too strong, though, because the Hoare logic cannot guarantee
anything about what happens after the function returns: one can very well prove a Hoare
judgment for a function, if this function is called with a continuation k that will fail just
after, we will have trouble proving that the call state is safe. For this reason, the semantic
judgment includes one additional hypothesis, stating that any return state R(v′, k,M ′)
sharing the same continuation k and for which v′ and M ′ verify the post-condition, is safe.
This hypothesis is called a continuation safety hypothesis, and the whole proof is done in
continuation passing style: we prove that some state is safe by first proving it is safe for the
first few steps, and invoke the continuation safety hypothesis for the end of the execution.
Thus, the semantic judgment for function looks like:

⊨ {P} f {Q} ≡

 ∀k, (k = stop ∨ k = returnto(. . .))

∧ (∀v′M ′, Q[v′,M ′]⇒ safe R(v′, k,M ′))
=⇒ ∀v⃗M, P [v⃗,M]⇒ safe C(f, v⃗, k,M)

(4.70)

The proof is done by using the technique of step-indexing [AM01]. That is, we use an
induction scheme on the length of the potential erroneous trace. To this end, we defined
the safen predicate, indexed on n, a bound on the length of considered traces. We also
have an indexed definition of the semantic judgment, which uses an intermediate definition

6Another approach, traditionally used in the literature [AB07], would be to define the Hoare judgments
directly using their semantic counterparts. Then, each of the rules defined in Section 4.2.1 can be proved,
as well as the consequence and disjunction rules. We can even use the step indexing mechanism as a
form of coinduction. Some of the proofs are simpler using this other approach, because they sometimes
do not need to enumerate all the language constructs. Yet, we could not see any way to extend the proof
method to support the conjunction rule.

94

4.2. An Axiomatic Semantics for C#minor

Kret,n[Q, k] for the continuation safety hypothesis:

safen S ≡ ∀n′S′, ¬(S →n′
S′ ∧ S′ is stuck ∧ n′ < n) (4.71)

Kret,n[Qret, k] ≡ ∀vM, Qret[v,M]⇒ safen R(v, call_cont(k),M) (4.72)

⊨n {P} f {Q} ≡
[
∀k, (k = stop ∨ k = returnto(. . .)) ∧Kret,n[Q, k]

=⇒ ∀v⃗M, P [v⃗,M]⇒ safen C(f, v⃗, k,M)
(4.73)

The semantic judgments for statements and for jump tables use one continuation safety
hypothesis for each post-condition. The definition of these hypotheses are as follows:

Kn[Q, f, k, ρ] ≡ ∀EM, Q[E,M]⇒ safen S(f, skip, k, ρ, E,M) (4.74)

Kexit,n[Qexit, f, k, ρ] ≡ ∀xEM, Qexit[x,E,M]⇒ safen S(f, exit x, k, ρ, E,M) (4.75)

Kgoto,n[Qgoto, f, k, ρ] ≡ ∀Lk0EM, Qgoto[L,E,M] ∧ call_cont(k) = call_cont(k0)

⇒ safen S(f, goto L, k0, ρ, E,M)
(4.76)

Then, the semantic judgment for statements follows:

ρ ⊨n
{

P
lbl→ Plbl

}
s

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

≡

∀fk, Kn[Q, f, k, ρ] ∧Kret,n[Qret, k]
∧Kexit,n[Qexit, f, k, ρ] ∧Kgoto,n[Qgoto, f, k, ρ]

=⇒ (∀EM, P [E,M] ⇒ safen S(f, s, k, ρ, E,M))

∧ (∀LEMs′k′, Plbl[L,E,M] ∧ find_label(L, s, k) = ⌊s′, k′⌋
⇒ safen S(f, s′, k′, ρ, E,M))

and for jump tables:

ρ ⊨n
{
case→ Pcase def→ Pdef

lbl→ Plbl ft→ Pft

}
stbl

{
Q ret→ Qret

exit→ Qexit goto→ Qgoto

}

≡

∀fk, Kn[Q, f, k, ρ] ∧Kret,n[Qret, k]
∧Kexit,n[Qexit, f, k, ρ] ∧Kgoto,n[Qgoto, f, k, ρ]

=⇒ (∀EMxs′tbl, Pcase[x,E,M] ∧ select_switch_casex stbl = ⌊s′tbl⌋
⇒ safen S(f, seq_of_tbl s′tbl, k, ρ, E,M)

∧ (∀EMs′tbl, Pdef [E,M] ∧ select_switch_default stbl = s′tbl

⇒ safen S(f, seq_of_tbl s′tbl, k, ρ, E,M)

∧ (∀EM, Pft[E,M] ⇒ safen S(f, seq_of_tbl stbl, k, ρ, E,M)

∧ (∀LEMs′k′, Plbl[L,E,M] ∧ find_label(L, s, k) = ⌊s′, k′⌋
⇒ safen S(f, s′, k′, ρ, E,M))

95

Chapter 4. Iterating Over the C#minor Language

Using these definitions, we can prove the main soundness theorem for the axiomatic
semantics:
Theorem 4.2.9 (Soundness). For each of the three syntactic classes of C#minor (functions,
statements and jump tables), the Hoare judgment ⊢ imply their semantic counterpart ⊨n for
any n.
Applying this theorem on the main function with the stop continuation, and noticing a

final state is always safe gives the following corollary:
Corollary 4.2.10 (Whole-program soundness). Assume that the program has an initial
state with initial memory Minit. Moreover, suppose the following Hoare triple is provable:

⊢ {λv⃗M. v⃗ = nil ∧M = Minit} main {λvM. ∃r, v = int r}

Then, the program cannot reach an erroneous state. That is, if S0 is the initial state:

∀S, S0 →∗ S =⇒ ¬(S is stuck)

Proof sketch

The proof of the soundness theorem uses two induction schemes7: first, it uses the strong
induction principle on n as is usual with step-indexing. This scheme is used to prove
simultaneously the three parts of the theorem. Second, the proof uses the mutual induction
scheme on statements and jump tables. We do not give the entire proof here. As for previous
theorems, we focus on two cases: the sequence and the loop statement. So, let n be the
step index, and let’s assume the theorem is true for any n′ < n and only for sub-statements
of considered statement when n′ = n.
We first consider the sequence case (s1; s2). We assume that the sequence rule (4.29) has

been used with the intermediate predicate R to prove a Hoare judgment for (s1; s2). We
also assume the continuations safety hypotheses Kn, Kret,n, Kexit,n and Kgoto,n hold, and
prove the two conclusions of the semantic judgment for (s1; s2). They are:

∀EM, P [E,M] ⇒ safen S(f, (s1; s2), k, ρ, E,M) (4.77)

∀LEMs′k′, Plbl[L,E,M] ∧ find_label(L, (s1; s2), k) = ⌊s′, k′⌋
⇒ safen S(f, s′, k′, ρ, E,M)

(4.78)

To begin, we focus on (4.77): we exploit the fact:

S(f, (s1; s2), k, ρ, E,M)→ S(f, s1, (s2; k), ρ, E,M) (4.79)

so that it suffices to prove8:

∀EM, P [E,M] ⇒ safen−1 S(f, s1, (s2; k), ρ, E,M) (4.80)

This is one of the two conclusions of the induction hypotheses9 on s1, so it suffices to prove
the continuation safety hypotheses Kn−1[R, (s2; k)], Kret,n−1[(s2; k)], Kexit,n−1[(s2; k)] and
Kgoto,n−1[(s2; k)].

7It is worth noting that, because it is defined by coinduction, we do not have an induction scheme on proof
trees.

8The case n=0 is trivial. We assume n > 0.
9We can use here either structural induction on the statements or induction on n. We prefer the induction

hypothesis on n because it is slightly stronger.

96

4.2. An Axiomatic Semantics for C#minor

Because safen is monotonic on n, Kret,n−1[(s2; k)] and Kgoto,n−1[(s2; k)] follow immedi-
ately from Kret,n[k] and Kgoto,n[k], respectively.
Similarly, Kexit,n−1[(s2; k)] follows from Kexit,n[k] using the same monotonicity argument

and noticing that S(f, exit x, (s2; k), ρ, E,M)→ S(f, exit x, k, ρ, E,M).
To prove Kn−1[R, (s2; k)], we first notice that:

S(f, skip x, (s2; k), ρ, E,M)→ S(f, s2, k, ρ, E,M) (4.81)

so that it suffices to prove:

∀EM, R[E,M] ⇒ safen−2 S(f, s2, k, ρ, E,M) (4.82)

This is easily proved by the induction hypothesis on s2, whose continuation safety hypotheses
are exactly Kn, Kret,n, Kexit,n and Kgoto,n, which we had in hypotheses.
To prove (4.78), we distinguish two cases. If the target label is in the second statement10,

the induction hypothesis11 on s2 is exactly the proposition we need. If the target label is
in s1, we use the induction hypothesis on s1, and prove the continuation safety hypotheses
as done for the other conclusion.
The proof for the sequence statement did not use in a primordial way the induction

hypothesis on n, the step index. This is symptomatic of the fact that the sequence statement
is not a recursive construct: in fact, it would have been possible to prove termination using
this same technique. On the contrary, the proof for the loop statement definitely needs
the step-index induction. We see the same phenomenon for function call and the goto
statement, which both introduce non-termination12. Let’s see in more details the proof for
the loop case.
We start similarly to the sequence case: we assume that the loop rule (4.31) has been

used to prove the judgment, with some invariant I. We also assume the continuation safety
hypotheses Kn, Kret,n, Kexit,n and Kgoto,n and prove separately both conclusions of the
semantic judgment. We focus only on the first one: the second one uses similar ideas.
To this end, we first use P ⇒ I and the transition for loop of the operational semantics

to reduce to proving:

∀EM, I[E,M] ⇒ safen−1 S(f, s, (loop s; k), ρ, E,M) (4.83)

This is proved using either induction hypothesis. All the continuation safety hypotheses are
treated similarly to the sequence case, except for Kn−1[I, (loop s; k)]. We use the transition:

S(f, skip, (loop s; k), ρ, E,M)→ S(f, loop s, k, ρ, E,M) (4.84)

so that it suffices to prove:

∀EM, I[E,M] ⇒ safen−2 S(f, loop s, k, ρ, E,M) (4.85)

Here, we can either restart again and again the reduction we have just done, decrementing
n by 2 at each iteration. Instead, we can also use the step index induction hypothesis,
whose continuation safety hypotheses can be proved directly by using the hypotheses. This
concludes the proof.
10i.e., find_label(L, s1, (s2; k)) = ∅
11We use here the structural induction, because we keep the same step index n.
12It is interesting to note that the use of step index induction could be replaced with induction on the proof

tree if we used an inductive proof tree instead of a coinductive one. We recover here the fact that such
an inductive system could not be used to prove recursive functions.

97

Chapter 4. Iterating Over the C#minor Language

Looking at the proof structure, it appears that the proof of this theorem has interesting
computational contents: it is, in fact, a dependently typed interpreter of C#minor written
in continuation passing style, with a parameter n giving an upper bound on the number of
steps to perform. An alternative would be, instead of generating partial traces bound by n,
to generate potentially infinite, coinductive traces.

4.3. Design and Proof of the Abstract Interpreter
One way to describe the role of the abstract interpreter is to automatically build program
proofs using elements of the abstract domains as logical assertions in order to infer inter-
esting specifications. For this reason, the design of the axiomatic semantics mimics the
design of the interpreter. That is, the abstract interpreter is programmed using three main
mutually recursive functions, one for each of the three judgments of the axiomatic logic.
Each of them takes as parameter the pre-conditions (as abstract states of the state abstract
domain) and returns, in the alarm_mon monad, the tuple of the inferred post-conditions (still
as abstract states).

4.3.1. Transfer Functions

By abuse of notations, the three transfer functions defining the abstract interpreter are
denoted by T . The definition of transfer functions for statements and jump tables are given
in Figure 4.3 and Figure 4.4. For the sake of simplicity of the description, we omitted
the fact that they are all defined within the alarm_mon monad: the actual definitions use
monadic operators such as ret and bind. They are defined by mutual structural induction.
They are both parameterized by r, the optional temporary to be assigned to the return
value of the current function in the calling frame (this is used for return, which modifies
the calling frame). The transfer function for statements takes as arguments:

• A, the input abstract state,

• Albl, the abstract states corresponding to the incoming goto control flow, actually
represented as a map from labels to abstract states,

• the statement to be analyzed.

The transfer function for jump tables calls the assume transfer function on the fly to spe-
cialize the abstract state on cases. It takes as parameters:

• e, the expression on which case analysis is done,

• τ , the type of the case analysis (i.e., either int or int64),

• the jump table involved,

• A, the abstract state before the case analysis,

• Adef , the abstract sate assuming no case item is taken, evaluated using the assume_def
function,

• Albl, the abstract states for labels (as for statements),

• Aft the abstract state corresponding to the control flow falling through the previous
case.

98

4.3. Design and Proof of the Abstract Interpreter

Tr (skip) (A,Albl) = (A,⊥,⊥,⊥)

Tr (x := e) (A,Albl) = (assign x e A,⊥,⊥,⊥)

Tr (x :=?τ) (A,Albl) = (assign_any x τ A,⊥,⊥,⊥)

Tr (store(τ, e1, e2)) (A,Albl) = (store τ e1 e2 A,⊥,⊥,⊥)

Tr (t? := e(e⃗) : sig) (A,Albl) =

 ⊔
f ∈ deref_fun e A

T sig
t?

f e⃗ A,⊥,⊥,⊥

Tr (s1; s2) (A,Albl) = (A′′, Aret ⊔A′ret, Aexit ⊔Aexit, Agoto ⊔A′goto)

where
{

(A′, Aret, Aexit, Agoto) = Tr s1 (A,Albl)

(A′′, A′ret, A
′
exit, A

′
goto) = Tr s2 (A′, Albl)

Tr (if e then s1 else s2) (A,Albl) = Tr s1 (At, Albl) ⊔ Tr s2 (Af , Albl)
where (At, Af) = assume e A

Tr (switchτ e stbl) (A,Albl) = T e:τ
r stbl (A, (assume_defe:τ stbl A), Albl,⊥)

Tr (loop s) (A,Albl) = (⊥, Aret, Aexit, Agoto)
where (_, Aret, Aexit, Agoto) = pfp (λX. Tr s (X,Albl)) A

Tr (exit n) (A,Albl) = (⊥,⊥, (λn′. if n′ = n then A else ⊥),⊥)

Tr (block s) (A,Albl) = (A′ ⊔Aexit(0), Aret, (λn. Aexit(n+ 1)), Ag)
where (A′, Aret, Aexit, Ag) = Tr s (A,Albl)

Tr (goto L) (A,Albl) = (⊥,⊥,⊥, (λL′. if L′ = L then A else ⊥))

Tr (return e?) (A,Albl) = (⊥, pop_frame e r A,⊥,⊥)

Tr (L : s) (A,Albl) = Tr s (A ⊔Albl(L), Albl)

Figure 4.3: Abstract interpreter for statements

99

Chapter 4. Iterating Over the C#minor Language

assume_defe:τ ([]) A = A

assume_defe:τ (case n : s; stbl) A = assume_defe:τ stbl A
′

where (_, A′) = assume (e=τn) A

assume_defe:τ (default : s; stbl) A = assume_defe:τ stbl A

T e:τ
r ([]) (A,Adef , Albl, Aft) = (Adef ⊔Aft,⊥,⊥,⊥)

T e:τ
r (case n : s; stbl) (A,Adef , Albl, Aft) = (A′′, Aret ⊔A′ret, Aexit ⊔Aexit, Agoto ⊔A′goto)

where

(Acase,_) = assume (e=τn) A

(A′, Aret, Aexit, Agoto) = Tr s (Acase, Albl)

(A′′, A′ret, A
′
exit, A

′
goto) = Ttbl stbl (A,Adef , Albl, A

′)

T e:τ
r (default : s; stbl) (A,Adef , Albl, Aft) = (A′′, Aret ⊔A′ret, Aexit ⊔Aexit, Agoto ⊔A′goto)

where
{

(A′, Aret, Aexit, Agoto) = Tr s (Adef , Albl)

(A′′, A′ret, A
′
exit, A

′
goto) = T e:τ

r stbl (A,⊥, Albl, A
′)

Figure 4.4: Abstract interpreter for jump tables

Both transfer functions return a 4-tuple containing:

• A′, the abstract state at the end of the statement,

• Aret, the abstract state after one of the return statements has been executed,

• Aexit, the abstract states after the execution of exit statement, actually represented
as a list of abstract states,

• Agoto, the abstract states after the execution of goto statements, represented like Albl

as a map from labels to abstract states.

They call several primitives of the state abstract domain, whose interface is shown in
Figure 3.2. For the sake of simplicity of the description, we omitted a few details: we make
implicit the fact that all the computations occur both in the alarm_mon and +⊥ monads;
we omitted that, in the case of an empty switch statement, it is necessary to check that
the expression does not generate an error; and we omitted the capability of the transfer
function for loops to unroll a few initial iterations. Finally, note that the transfer function
for statements depends on the pfp function, that computes a loop invariant. We describe
pfp in Section 4.3.3.
Moreover, we do not give much details about the transfer function for functions. It

takes as parameters the function to be analyzed, the signature expected at call sites, the
temporary to be assigned by the return value, the list of parameters, as expressions, and
the input abstract state. It returns the abstract state after the return of the function.
Because we do not check a priori that the program is not recursive, this function is defined
by induction on an additional fuel parameter in nat, limiting the depth of the call stack.
The case where the limit is reached is handled by emitting an alarm13. Here is a summary
of the contents of the transfer function:
13In practice, after the extraction, we give for the fuel parameter the OCaml value recursively defined by

let rec inf = S inf. This is a standard practice to avoid proving the termination of a Coq function.

100

4.3. Design and Proof of the Abstract Interpreter

• it checks that the signature of the called function is as expected;

• it does a few syntactic checks on the function (for example, no temporaries or param-
eter identifier should appear twice);

• it calls the push_frame primitive of the state abstract domain;

• it computes a post-fixpoint of the transfer function for statements applied to the
function body, for which Agoto ⊑ Albl. The transfer function for statements itself
uses a recursive call of the transfer function for functions, with the fuel parameter
decremented14;

• using this fixpoint, it checks that the returned Agoto and Aexit abstract states do not
leak control flow (that is, Aexit should be the empty list, and Agoto should contain
non-bottom abstract states only for defined labels);

• it emulates the presence of a return statement at the end of the body;

• it returns the outgoing abstract state.

The global iterator constructs an initial abstract state by calling the init_mem primitive
of the state abstract domain, searches for the main function, and runs the function transfer
function on it.

4.3.2. Soundness

The abstract interpreter main theorem states that if the interpreter does not return an
alarm (i.e., the returned list of alarms is nil), then the program cannot go wrong (i.e.,
reach an erroneous state):

Theorem iter_program_sound:
∀ res, iter_program unroll prog = (res, nil) ->
∀ tr, program_behaves (semantics prog) (Goes_wrong tr) ->
False.

Statements and jump tables

In order to prove this theorem, we need first to give a specification to the iterator for
statements and prove it sound. As already sketched, this specification ensures, given that
the transfer function returns no alarms, that there exists a Hoare tuple consisting in the
concretizations of the parameters, the statement in question and the concretizations of the
resulting abstract states. The situation is, however, a bit more complex than it may appear
at first. Indeed, as we have seen in Section 3.2.1, the concretization of an abstract state
is a concrete state, containing not only the current memory state and environments for
temporary and local variables, but also the identifiers of calling functions and the other
stacked environments.
For this reason, the whole proof of soundness for the transfer function for statements is

parameterized by:

This is sound, because if the extracted program terminates, then it is guaranteed that it has explored
only a finite part of this infinite value, so the behavior would have been the same if we had replaced this
infinite value by a finite value sharing that finite part.

14This is implemented by using open recursion: the transfer function for statements takes as parameter
(using a section variable) the tranfer function for functions, which is always the same term, except for
the fuel parameter that depend on the recursion depth.

101

Chapter 4. Iterating Over the C#minor Language

• the tail σ of the call stack, of type list (ident * (temp_env * env));

• the identifier i of the current function;

• the local environment ρ;

• the transfer function for functions, with its soundness proof15;

• and r, the optional temporary to be assigned at function return.

Using these parameters, we can translate the abstract states to Hoare pre- and post-
conditions:

P (A)[E,M] ≡ ((i, (E, ρ)) :: σ,M) ∈ γ(A) (4.86)
Plbl(Albl)[L,E,M] ≡ ((i, (E, ρ)) :: σ,M) ∈ γ(Albl(L)) (4.87)

P e:τ
case(Acase)[n,E,M] ≡ ρ,E,M ⊢ e ⇓ τ n ∧ P (Acase)[E,M] (4.88)

Qret(Aret)[v,M] ≡

((i, (E{r → v}, ρ)) :: σ′,M) ∈ γ(Aret)

if σ = (i, (E, ρ)) :: σ′

(nil,M) ∈ γ(Aret) ∧ ∃n, v = int n if σ = nil

(4.89)

Qexit(Aexit)[n,E,M] ≡ ((i, (E, ρ)) :: σ,M) ∈ γ(Aexit(n)) (4.90)
Q(A) ≡ P (A) (4.91)

Qgoto(Agoto) ≡ Plbl(Agoto) (4.92)

The soundness of the transfer functions for statements and jump tables is stated as follows:

Lemma 4.3.1. 1. If, for some s, A, Albl, A′, Aret, Aexit and Agoto, we have, without
raising alarms:

Tr s (A,Albl) = (A′, Aret, Aexit, Agoto)

Then, the following Hoare tuple is derivable:

ρ ⊢
{

P (A)
lbl→ Plbl(Albl)

}
s

{
Q(A′) ret→ Qret(Aret)

exit→ Qexit(Aexit) goto→ Qgoto(Agoto)

}

2. If, for some e, τ , stbl, A, Adef , Albl, Aft, A′, Aret, Aexit and Agoto, we have, without
raising alarms:

T e:τ
r stbl (A,Adef , Albl, Aft) = (A′, Aret, Aexit, Agoto)

Then, the following Hoare tuple is derivable:

ρ ⊢

case→ P e:τ

case(A)
def→ P (Adef)
lbl→ Plbl(Albl)
ft→ P (Aft)

 stbl

Q(A′)

ret→ Qret(Aret)
exit→ Qexit(Aexit)
goto→ Qgoto(Agoto)

The proof is by structural induction on the statement, following the definition of the

transfer functions.
The following lemma proves the soundness of the transfer function for functions:

15Like in the definitions of the transfer functions, we use open recursion.

102

4.3. Design and Proof of the Abstract Interpreter

Fixpoint pfp_widen (fuel:nat) (f:abstate+⊥ -> alarm_mon outcome)
(x:abstate+⊥) (y:abstate_iter): alarm_mon outcome :=

let fx := f x in
match fuel with
| S fuel =>
if (fst fx).(onormal) ⊑ x then fx
else let '(y, x) := y ▽ (fst fx).(onormal) in

pfp_widen fuel f x y
| O =>
do _ <- alarm_am "Not enough fuel to reach a fixpoint";
fx

end.

Figure 4.5: Increasing iterations with widening

Lemma 4.3.2. If, for some f , sig, t?, e⃗, A and A′, we have, without raising alarms:

T sig
t?

f e⃗ (A) = A′

Then, for every temporary environment E and memory state M such that P (A)[E,M] holds,
there exists parameter values v⃗ such that:

1. f has signature sig;

2. ρ,E,M ⊢ e⃗ ⇓ v⃗;

3. the following Hoare tuple is derivable:

⊢ {λv⃗′M ′. v⃗′ = v⃗ ∧ M ′ = M} f {λv′M ′. Q(A′)[E{t? ← v′},M ′]}

4.3.3. Inferring Invariants Using Widening and Decreasing Steps

In the definition of the transfer functions, we did not explain how the pfp function computes
invariants of loops. We neither explained how invariants for gotos and labels are inferred.
Both fixpoint computations use the same methodology. For the sake of simplicity, we
concentrate on the pfp function, dedicated to loops.
This function is actually decomposed into two steps: the first step does increasing it-

erations with widening, as sketched in Section 3.1.2. The second step consists of a few
decreasing iterations in order to refine the invariant.

Increasing iterations

The increasing iteration scheme is implemented in the pfp_widen function shown in Fig-
ure 4.5. It basically implements the iteration scheme of (3.13), but taking into account the
fact that the transfer function of the loop body returns several abstract values in a monad.
It does the computation ignoring alarms and returned abstract values except the normal one
(the role of (fst fx).(onormal) is to extract this abstract value from the returned monadic
value). It returns the tuple of post-conditions associated with the loop body instead of the
invariant: we are actually not interested in the invariant directly, and this avoids computing
angain the post-conditions. Finally, this computation uses recursion on a fuel parameter
and emits an alarm in the case the fuel is exhausted.
The specification of this function is the following lemma:

103

Chapter 4. Iterating Over the C#minor Language

Lemma pfp_widen_ok:
∀ fuel f x y o,
pfp_widen fuel f x y = (o, nil) ->
∃ x0, f x0 = (o, nil) /\

γ o.(onormal) ⊆ γ x0 /\
γ y ∩ γ x ⊆ γ x0.

That is, if the iteration finishes without raising an alarm, then the result has been produced
by applying the transfer function on an abstract state that has two properties. First, it is a
stable invariant, meaning that it contains the loop post-condition. Second, it is greater than
the intersection of the initial conditions of the iteration. This second condition is important
to make sure that the invariant contains the loop initial pre-condition: indeed, pfp_widen is
initially called with (x:=pre) and (y:=init_iter pre), where pre is the loop pre-condition.
With the specification of init_iter, this is enough to prove γ pre ⊆ γ x0.
This lemma would let us prove directly the Hoare tuple for the loop, by using γ x0 as

invariant. However, we use a common technique to improve this invariant using decreasing
iterations.

Decreasing iterations

Intuitively, decreasing iterations are a kind of loop unrolling, at the end of the considered
trace. They potentially provide a more precise loop invariant than the one provided by the
increasing iteration.
Algorithmically, it consists in applying the transfer function a few more times, and joining

the input state at each iteration. There is no need to check again that the result is still an
invariant (intuitively, it corresponds to a loop unrolling at the end of the considered trace).
If the new iterations create new alarms, we abort the process and use the previous invariant.
Conversely, if the new iteration no longer has alarms but the previous one had, we have to
check the inferred invariant is indeed an invariant using ⊑, because there is no guarantee
the previous invariant was a valid one (it generated alarms).
We use one last improvement: sometimes, we are able to statically infer that the loop

ends at its first iteration16. This can be detected when the normal post-condition of the
loop is ⊥. It is very unlikely that in that case we may find a better invariant by decreasing
iterations, because we use the exact same pre-condition for the loop body. So, we abort
immediately the computation in this case. The final decreasing iteration function is defined
by:
Fixpoint pfp_narrow (f : abstate+⊥ -> alarm_mon outcome) (lb:abstate+⊥)

(steps:nat) (cur:alarm_mon outcome) : alarm_mon outcome :=
match steps with
| S steps =>
if is_bot (fst cur).(onormal) then

(* The normal outcome of the body is ⊥: it is very unlikely that we
find an improvement. *)

cur
else

(* Computing the next iteration... *)
let next := f (lb (fst cur).(onormal)) in
(* Looking at alarms. *)
match snd cur, snd next with
| _ :: _, nil =>

(* We had alarms before, not any more: we need to check we have
an invariant. *)

if (fst next).(onormal) ⊑ (fst cur).(onormal)
16This is typical when using initial loop unrolling or a {do ... while(0)} construct in a macro.

104

4.4. Related Work and Perspectives

then pfp_narrow f lb steps next
else cur

| nil, _ :: _ =>
(* We had no alarms before, but now we have one. Just forget

this step. *)
cur

| nil, nil | _ :: _, _ :: _ =>
(* Otherwise: continue the iteration. *)
pfp_narrow f lb steps next

end
| O => cur
end.

Note that we do not use a narrowing operator to automatically infer the number of steps
needed to reach a fixpoint at the decreasing phase. Instead, we call this function with a
small number of steps: performing a single step seems to be a good compromise in practice.
Combining the increasing and decreasing phases, the pfp function is defined by:

Definition pfp (f : abstate+⊥ -> alarm_mon outcome) (lb:abstate+⊥) :=
let fp := pfp_widen fuel f lb (init_iter lb) in
pfp_narrow f lb narrowing_steps fp.

The proof of the decreasing phase is not trivial. Indeed, the transfer function of the loop
body is not always increasing17. For this reason, the abstract state returned by pfp_narrow
may very well not be a stable invariant, even if it holds at every iteration. Thus, we use the
proof scheme described in Section 4.2.4: the disjunction of the loop precondition and of the
abstract value returned by pfp_widen is an invariant, and, a fortiori an unstable invariant.
It is then easy to prove by induction on the decreasing steps that pfp_narrow also returns
an unstable invariant.

4.4. Related Work and Perspectives

4.4.1. Comparison with Related Work
The fact that operational semantics are not adapted for reasoning on the soundness of
abstract interpreters is not new. This observation has already been made by Cousot and
Cousot at the very beginning of the theory of abstract interpretation [CC77]. In this early
study, Cousot and Cousot described a “static semantics” for their programs, which is nowa-
days usually referred as a collecting semantics. The idea behind collecting semantics is to
describe the semantics of the program by giving, for each control point, the set of states
in which the machine can be when reaching this control point. The result of the abstract
interpretation of the program therefore associates each control point to an abstract state
approximating the concrete states reached at this control point.
Our proof technique for our abstract interpreter has two major differences with the

Cousots’ initial approach. First, in our axiomatic semantic, instead of speaking of sets
of concrete states, we manipulate logical predicates (i.e., pre- and post-conditions) that
approximate these sets. Second, our source language does not provide a notion of control
point to associate with concrete or abstract states, so we have defined our program logic by
following the syntax of the language.
Bertot [Ber09] already used an axiomatic semantics based on logical predicates for prov-

ing the soundness of a static analyzer using abstract interpretation. In this work, Bertot
defined a toy static analyzer for a very simple language featuring while loops and variable
17Neither with respect to ⊑ nor with respect to the inclusion of concretizations.

105

Chapter 4. Iterating Over the C#minor Language

assignments with pure arithmetical expressions over unbounded integers and Booleans. This
analyzer returns an annotated version of the input program. The annotations are asser-
tions inferred by the static analyzer, that are guaranteed to hold during the execution of
the program.
Other axiomatic semantics have already been defined for C-like languages with complex

control flow. Our axiomatic semantics is greatly inspired from these works [Kre15, App14].
However, these program logics are based on separation logic in order to ease the direct proof
of programs. We do not use such separation features in our program logic. This simplifies
greatly our soundness proof, and lets us prove our conjunction rule, which is essential for
proving the soundness of decreasing iterations. The conjunction rule is known to be unsound
in separation logic when stated naively [O’H04, Section 7].

4.4.2. Possible Extensions to the Interpreter

Enriching the Result of the Analysis

A possible extension to the abstract interpreter of Verasco would be to include in the result
of the analysis, more properties inferred by the analyzer on program states instead of just
proving the absence of undefined behaviors. These properties could be used by other static
analysis tools, by the compiler optimizer or even to help the user debug the imprecision of
analyses.
One important problem is the specification of this new feature: it is really unclear how to

specify assertions on intermediate steps of computation of the program, when these steps
do not produce any interaction in the execution trace. A solution to this problem, inspired
by Bertot [Ber09] would be to produce, as the result of the analysis, an annotated version of
the program, with assertions that are guaranteed to hold during executions of the program.
Another solution to the specification problem would be to let the user annotate the input
program at strategic places where she would need information. These annotations would
produce an event in the execution trace, and the final theorem of the analyzer could relate
the result of the analyzer with these events. They could be either manually inserted by the
user or generated by a preliminary pass.

Improving the Precision Through Trace Partitioning

Trace partitioning [RM07] is a technique used in static analyzers to improve their precision
by partitioning the set of concrete states reached at some program point depending on
the path that led to the given state. For example, an analyzer can choose to store two
abstract environments at a program point following the merge point of an if statement:
the first approximates the set of states reached by taking the first branch and the second
approximates the set of states reached by taking the second branch.
The implementation of this technique in Verasco would bring more precision in the anal-

ysis. However, it would either require user annotations or carefully tuned heuristics in order
to chose the partitioning strategy.

Caching Loop Invariants

When analyzing nested loops, the invariant inferred for the inner loop has to be recomputed
for each iteration of the analysis of the outer loop. This can lead to exponential behavior
of the analyzer in case of large nesting depth. To overcome this problem, Astrée caches the
invariant inferred for the inner loops in order to reuse them during subsequent iterations of

106

4.4. Related Work and Perspectives

outer loops [CCF+09, Section 5.1]. Implementing this strategy could improve the perfor-
mance of Verasco but it would require to reimplement the iterator by using a state monad
keeping track of the inferred invariants.

107

III
The Numerical Backend of

Verasco

Chapter 5
Handling Machine Arithmetic

The root of the hierarchy of numerical abstract domains in Verasco handles machine arith-
metic. Indeed, no arithmetic operation in C compute on ideal mathematical numbers. That
is, integer arithmetic is performed modulo 232 or 264, and real arithmetic is estimated using
single or double precision floating-point numbers.
In Verasco, both machine integer and floating-point arithmetic are handled in a sound

and relatively precise manner. However, this precision does not complicate much the nu-
merical abstract domain, because all these arithmetic constructs are encoded into simpler
constructs: ideal integer arithmetic and double precision floating-point arithmetic. This
encoding is described by the machine arithmetic functor, which transforms an ideal numer-
ical abstract domain (actually a combination of such domains) into a machine arithmetic
abstract domain.
One difficulty in the design of this abstract domain is that C#minor does not distinguish

signed integers and unsigned integers. That is, many operations (such as addition, sub-
traction, multiplication, many bitwise operations...) operate on bit vectors in a signedness-
unaware fashion.
This problem has already been encountered in other analyzers. Several approaches are

known: using wrapped intervals [NSSS12], or the reduced product of two intervals of Z,
tracking signed and unsigned interpretations respectively [BLMP13]. However, these ap-
proaches do not extend well to the relational domains used in Verasco. Instead, Verasco
provides a mechanism able to handle machine arithmetic in a signedness agnostic way using
any kind of potentially relational numerical abstract domain.
We have chosen not to use directly the arithmetic over reals at this level, for several rea-

sons: first, the simplification would have been mitigated by the fact that floating-point val-
ues can be infinites or NaNs, which have no equivalent in R, so a type like R∪{+∞,−∞, NaN}
would have been needed; second, the implementation of the interval abstract domain over
reals (but using floating-point numbers) would be very similar (but slightly less precise,
given that we would have to use rounding towards +∞). Thus, instead, we simply merge
the single precision arithmetic and the double precision arithmetic by using the innocuous-
ness of double rounding in these cases [Fig95, Rou14].
Moreover, in order to simplify further the ideal numerical domain interface, our machine

arithmetic functor also issues appropriate queries to the ideal numerical domain to check
for arithmetic errors. These arithmetic errors are division errors (i.e., when dividing by
0 or when dividing min_int by -1), shift overflows, and overflows when converting from

111

Chapter 5. Handling Machine Arithmetic

floating-point types to integer types.
The mode of operation of this functor is the following: it converts each query using

machine arithmetic to an equivalent query that uses ideal arithmetic. In order to check for
errors and handle numerical overflow, it does additional queries on sub-expressions.

5.1. Relating Ideal Environments and Machine
Environments

The first step to understanding our abstract domain functor is to see how ideal values and
environments are related to machine ones. Our approach is basic: an N -bit machine integer
value is related to every ideal integer value that shares its N low bits. Said differently,
an ideal integer value is related to its representative modulo 232 or 264. Double precision
floating-point numbers are related to themselves, and single precision floating-point numbers
are related to their double-precision expansion1. This is expressed using the following Coq
inductive predicate:
Inductive related : mach_num -> ideal_num -> Prop :=
| rel_int : ∀ x, related (MNint (Int.repr x)) (INz x)
| rel_long : ∀ x, related (MNint64 (Int64.repr x)) (INz x)
| rel_float : ∀ x, related (MNfloat x) (INf x)
| rel_single : ∀ x, related (MNsingle x) (INf (Float.of_single x)).

which relates machine numerical values (Section 3.2.2) to ideal numerical values (Sec-
tion 3.2.3). This relation naturally extends to environments by stating that values mapped
to a variable are related.
Using this relation, we can easily extend a concretization function for an ideal numerical

abstract domain to machine environments. Assume abt is a type for which we have a type
class instance of gamma_op abt (var -> mach_num) (that is, a concretization function to ideal
numerical environments). Then, we can define an instance for machine environments using
the same abstract values2:
Instance gamma_mach : gamma_op abt (var -> mach_num) :=

fun (v:abt) (ρ:var -> mach_num) =>
∃ ρ':var -> ideal_num,

ρ' ∈ γ v /\ ∀ id, related (ρ id) (ρ' id).

This choice of relation between machine and ideal values has two interesting properties.
First, it does not rely on signedness. That is, both signed and unsigned interpretations of a
machine integer are related to this machine integer; we do not need to choose a signedness for
expressions a priori. Second, many arithmetic operations are compatible with this relation.
That is, for many operators ∗m of integer machine arithmetic, there exists a corresponding
operator ∗i of ideal integer arithmetic such that if am and bm are machine values related to
ai and bi, respectively, then the result of am ∗m bm (if it exists) is related to ai ∗i bi. This is
the case of addition, subtraction, negation, multiplication, bitwise and, bitwise or, logical
left shift (but only for the left operand), etc. For this reason, there is no need to check

1Every single precision floating-point number has an exact representation as a double precision floating-
point number.

2We actually use a slightly different definition in the Coq development: indeed, as we will see in Sec-
tion 5.5, we implemented and disabled an optimization consisting in using intermediate variables for
sub-expressions that are analyzed several times. This complicates some parts of the implementation,
but does not change the general idea: we will omit this aspect in the current description. As an example,
the type of variables used in ideal environments is different from the one used in machine environments:
it can either be a program variable or an intermediate variable, but we ignore this fact.

112

5.2. Translating Expressions

for overflows for operands of such operators. In case of overflow, the correct wraparound
behavior is modeled.

5.2. Translating Expressions

The conversion of machine expressions to ideal expressions is done in a function that follows
the structure of the expression:

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
[...]
end.

This function takes as parameter an abstract environment and a machine expression, and
returns an ideal expression, with a Boolean indicating whether the given expression may
trigger an arithmetic error. Its specification is decomposed into two parts. The first part
concerns the evaluation of expressions:

Lemma convert_expr_eval:
∀ ab ρ ρ', (∀ id, related (ρ id) (ρ' id)) ->

ρ' ∈ γ ab ->
∀ e e' nerr', convert_expr ab e = (e', nerr') ->
∀ x, eval_mexpr ρ e x ->
∃ x', eval_iexpr ρ' e' x' /\ related x x'.

That is, consider ρ and ρ' two related environment such as ρ' (the ideal environment) is
in the concretization of a given abstract environment ab. If convert_expr returns an ideal
expression e' when given a machine expression e and the abstract environment ab, then the
values of e in ρ are related to values of e' in ρ'.
The second part of the specification ensures the soundness of the arithmetic error checks:

Lemma convert_expr_noerror:
∀ ab ρ' ρ , (∀ id, related (ρ id) (ρ' id)) ->

ρ' ∈ γ ab ->
∀ e e', convert_expr ab e = (e', true) ->

¬error_mexpr ρ e.

That is, consider ρ, ρ' and ab as previously3. If convert_expr returns true on its sec-
ond component when given an expression e, then e cannot have an arithmetic error when
evaluated in ρ.

5.2.1. Leaves: Variables, Literals and Non-Deterministic Atoms

Variables are translated into the same variable, converting the type tag to its ideal counter-
part. Doing so is always correct, since variables evaluate to related values when evaluated
in related environments. Moreover, no error can be generated by variables.

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
| MEvar (MNTint | MNTint64) x => (IEvar INTz x, true)
| MEvar (MNTfloat | MNTsingle) x => (IEvar INTf x, true)
[...]
end.

3Here, this is equivalent to say that ρ is in the concretization of ab, because ρ' does not appears in the rest
of the statement of the lemma.

113

Chapter 5. Handling Machine Arithmetic

Literals of machine expressions are translated into literals of ideal expressions, by choosing
the signed interpretation for integers:

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
[...]
| MEconst (MNint i) => (IEconst (INz (Int.signed i)), true)
| MEconst (MNint64 i) => (IEconst (INz (Int64.signed i)), true)
| MEconst (MNfloat f) => (IEconst (INf f), true)
| MEconst (MNsingle f) => (IEconst (INf (Float.of_single f)), true)
[...]
end.

The choice of the signed interpretation is heuristic: we could have chosen, for example,
the unsigned interpretation or any other integer modulo 2N . This is motivated by the fact
that the signed interpretation is the most likely to be meant by the author of the analyzed
code: indeed, if she means an unsigned literal, it is likely to be smaller than 2N−1, so both
interpretations coincide (large literal are rare in real code). In any case, if this is the wrong
interpretation, the correct modeling of wraparound on overflow is likely to recover the loss
of precision. If it does not, the analysis is sound but imprecise.

5.2.2. Operators Preserving Classes Modulo 2N

We have already mentioned that many operators do not need any check for overflow, because
the corresponding ideal operator behaves correctly whatever the related ideal integer that
serves as operand. This includes negation, addition, subtraction, multiplication, bitwise
negation, bitwise or, bitwise and, and conversion from 64-bit to 32-bit integers. None
of them can generate errors. They are all translated directly to their equivalent in ideal
arithmetic4.
As an example, the translation of 32-bit addition is defined by:

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
[...]
| MEbinop op e1 e2 =>
let '(e1, nerr1) := convert_expr v e1 in
let '(e2, nerr2) := convert_expr v e2 in
match op with
[...]
| Oadd => (IEbinop IOadd e1 e2, (nerr1 && nerr2)%bool)
[...]
end

[...]
end

5.2.3. Other Integer Arithmetic Operators

For the other integer arithmetic operations (including comparisons, division, modulo, bit-
wise shift, in signed and unsigned versions), it is necessary to make sure their operands do
not overflow. It appears that all these operators do specify a signedness for their operands.
Thus, we have two dedicated functions, normalize_expr_signedness (for 32-bit integers)
and normalize_expr_signedness64 (for 64-bit integers) that query an interval for a given
expression, and, if necessary, add a multiple of the modulus to the expression to make

4Bitwise operators in ideal integer arithmetic are defined on the infinite binary stream representation of
integers, using 2’s complement negation.

114

5.2. Translating Expressions

sure it fits the range of the given signedness. If that is not possible (e.g., when the size of
the interval returned by the numerical abstract domain is larger than the modulus), then
it returns the whole range of possible integers for this signedness and number of bits. In
any case, these functions return an expression that is a safe approximation of the given
expression, modulo 232 or 264, and whose domain is the given signedness range. Here is the
signature and the specification lemma of normalize_expr_signedness:

Definition normalize_expr_signedness (v:abt) (e:iexpr) (s:signedness):
iexpr :=

[...].

Lemma normalize_expr_signedness_correct:
∀ v e s e', normalize_expr_signedness v e s = e' ->
∀ ρ, ρ ∈ γ v ->
∀ x, eval_iexpr ρ e (INz x) ->
∃ x', x' ∈ γ (match s with Signed => signed_itv

| Unsigned => unsigned_itv end) /\
Int.eqm x x' /\
eval_iexpr ρ e' (INz x').

Proof. [...] Qed.

The translation of such an expression node consists in first converting the operands, then
applying these normalization functions, then using the corresponding ideal operator. In the
case of operators able to generate errors (division, modulo and bitwise shift), checks are
performed. As an example, we give here the translation for unsigned 32-bit division:

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
[...]
| MEbinop op e1 e2 =>
let '(e1, nerr1) := convert_expr v e1 in
let '(e2, nerr2) := convert_expr v e2 in
match op with
[...]
| Odivu =>

let e1 := normalize_expr_signedness v e1 Unsigned in
let e2 := normalize_expr_signedness v e2 Unsigned in
let nerr := nerr1 && nerr2 &&

is_bot (idnc_assume (IEbinop (IOcmp Ceq) e2 (IEconst (INz 0)))
true v)

in
(IEbinop IOdiv e1 e2, nerr)

[...]
end

end.

5.2.4. Floating-Point Arithmetic

Double precision floating-point arithmetic is available in the ideal numerical abstract do-
main, so no translation is needed. For single-precision floating-point arithmetic, we use a
result well-known by floating-point arithmetic experts [Fig95]. An implication of this re-
sult is that many single-precision arithmetic operations can be emulated by first computing
the corresponding double precision operation and then rounding the result to single preci-
sion. This is valid for negation, absolute value5, addition, subtraction, multiplication and
division. This result has recently been formally verified in the Flocq library [Rou14].

5No rounding happens for negation and absolute value, so this trick is not even necessary for these operators.

115

Chapter 5. Handling Machine Arithmetic

These theorems help us translate single precision floating-point arithmetic into double pre-
cision floating-point arithmetic, using a specific single precision to double precision rounding
operator of ideal arithmetic, called IOsingleoffloat. As an example, here is the code dedi-
cated to the translation of single precision addition:

Fixpoint convert_expr (v:abt) (e:mexpr) : (iexpr * bool) :=
match e with
[...]
| MEbinop op e1 e2 =>
let '(e1, nerr1) := convert_expr v e1 in
let '(e2, nerr2) := convert_expr v e2 in
match op with
[...]
| Oaddfs => (IEunop IOsingleoffloat (IEbinop IOaddf e1 e2),

(nerr1 && nerr2)%bool)
[...]
end

end.

5.2.5. Conversion Operators

Expressions at the machine arithmetic level contain many conversion operators. Some of
them can be translated into a no-op in ideal arithmetic: this is the case for 64-bit to 32-
bit integer conversion, and for double to single precision conversion. The translation of
some others is just the renormalization operation we already explained for the translation
of divisions: this is the case for all conversions from larger integer formats to smaller integer
formats: 64-bit to 32-bit, 32-bit to 8-bit, and 32-bit to 16-bit; all of those exist in both
signed and unsigned versions.
Conversions from floating-point types to integer types are translated into a dedicated

operator IOzoffloat of ideal expressions. It is necessary to check for overflows on the result
of the conversion.
After translation and renormalization of operands, conversions from integer types to

floating-point types are translated into two dedicated operators over ideal expressions:
IOfloatofz and IOsingleofz. These computations cannot fail, so no check is performed. It
is worth noting that, when converting from 64-bit integers to a single precision floating-
point number, double rounding can be harmful, thus it is necessary to distinguish single
precision and double precision.

5.3. Handling Ambiguity

Perhaps one disadvantage of this choice of relation between ideal and machine values is
its ambiguity. Indeed, a machine integer is related to infinitely many ideal integer values,
leading, in practice, to an imprecise behavior of the analyzer. To understand why this
happens, let us consider the backward analysis of a comparison. More precisely, we assume
the functor is parameterized by an interval domain, and explain the behavior of the analyzer
on the following code fragment:

int x = verasco_any_int();
if(x > 12) {

verasco_assert(x > 12);
}

116

5.3. Handling Ambiguity

Before the analysis of the condition, the interval domain has no information about x.
Thus, the conversion of the expression x > 12 will fail, because it will not be possible to
renormalize the left operand of >. As a result, no information will be acquired from the
analysis of the condition, and the assertion check will fail.
A solution would be to assign x to the interval [min_int, max_int], at the point of the

definition of x, but the analysis will still fail for an unsigned comparison, because the analyzer
cannot guess the signedness of a variable at the point of its definition in the C#minor code.
Our solution is different: before translating an expression, we first do a heuristic analysis

of the expression in order to guess the signedness of variables it contains, based on the
context of their occurrences. If we guess some new signedness information for a variable,
we ask the ideal abstract domain an interval for this variable. If the answered interval is ⊤,
then the variable is assigned to the range of values of its signedness.
In our example, the analysis will guess that x is a signed variable. Given that the interval

domain knows nothing about it, the machine arithmetic functor will assign x the interval
[min_int, max_int] as a preliminary step of the analysis of the condition. This analysis
will then succeed in inferring the interval [13, max_int] for x.
Unfortunately, this trick is sometimes insufficient. Indeed, consider the analysis of the

following piece of code:

int a = verasco_any_int(), b, c = verasco_any_int();
if(a > 12) {

b = (c > 10);
} else {

b = 0;
}
if(b) verasco_assert(c > 10);

This pattern is very common: it is generated for example by the front-end of CompCert
when encountering the logical && operator. If we used our solution as-is, the symbolic
equality abstract domain we describe in Chapter 7 would succeed in recovering the condition
c > 10 at the entry of the second test. However, at this point, the interval domain has no
information on c, leading to a the interval [11,+∞] for c after the analysis of the recovered
condition6, which is useless as it has no upper bound.
To avoid this kind of imprecision, we use one additional ingredient: first, we propagate

the guessed signedness information with abstract environments, hence a machine abstract
environment is actually a pair of an ideal abstract environment and a map of guessed
signednesses. Then, when computing a join, if, for some variable, one branch has guessed
more signedness information than the other, and if the interval for this variable in the other
branch is ⊤, then, in this other branch, we assign this variable to the interval corresponding
to the inferred signedness in the first branch.
We give here an annotated version of the previous example: for each important control

points, we give the relevant information stored in the abstract domains:

int a = verasco_any_int(), b, c = verasco_any_int();
if(a > 12) {

b = c > 10;
/* a : signed c : signed

a ∈ [13, max_int] c ∈ [min_int, max_int]
b == (c > 10) */

6It is important to understand that this second analysis is done at the ideal level, where it is no longer
possible to arbitrarily assign the interval [min_int, max_int] to c

117

Chapter 5. Handling Machine Arithmetic

} else {
b = 0;
/* a : signed

a ∈ [min_int, 12]
b == 0

*/
}
/* Join point: c is signed in the first branch, ⊤ in the second branch.

So, in the second branch, we assign it to [min_int, max_int].
a : signed c : signed
a ∈ [min_int, max_int] c ∈ [min_int, max_int]
b == ((a > 12) ? (c > 10) : 0)

*/
if(b) {

/* c ∈ [11, max_int] */
verasco_assert(c > 10);

}

To summarize, the following adjustments are needed:

• In the abstract states, we store additional signedness information. This information
does not create any constraint on concrete states. It just provides hints used when
assigning a signedness range to a variable. However, when doing so, it is needed
to know variable types (e.g., for a signed variable, should we use [−231, 231 − 1] or
[−264, 264 − 1] ?) For that reason, the functor also embeds a type abstract domain,
constraining the types of values of abstracted environments.

• Before translating expressions, we do a first analysis over them in order to extract
signedness and type information. If a new signedness is guessed for a variable for
which the numerical abstract domains return ⊤ when queried for an interval, this
variable is assigned the interval corresponding to its signedness.

• At join points (i.e., when computing a join operation), we transfer the signedness
information before joining numerical abstract values. That is, if some signedness
information is available on the left branch but not on the right branch, but both
branches agree on the type information, and the numerical abstract domains returns
⊤ when queried for an interval for this variable on the right branch, then, on the right
branch, this variable is assigned the interval corresponding to its signedness. The
converse operation is also carried from the right branch to the left branch.

5.4. Abstract Transfer Functions and Lattice
Operations

Some primitives of the machine numerical abstract domain interface (Figure 3.4) have a
simple implementation: mach_top, mach_leb, mach_widen and forget are wrappers around
the corresponding primitive of the ideal arithmetic abstract domain.
Primitives taking an expression as parameter (e.g., assign, assume, get_itv, noerror and

concretize_int) translate expressions using convert_expr before querying the ideal abstract
domain. Before this translation, the analysis described in Section 5.3 is performed. After
the translation, assign, assume and get_itv forward the call to the ideal abstract domain.

118

5.5. Weaknesses and Possible Improvements

Two queries are performed by concretize_int: an interval query and a congruence query.
The two results are used to enumerate, if possible, the values the given expression can take.
The implementation of noerror uses the Boolean returned by convert_expr to determine,

if possible, that the expression will not fail.
The mach_join operation is performed by first transferring signedness information, as

described in Section 5.3, and then joining abstract environments.

5.5. Weaknesses and Possible Improvements

This abstract domain functor does the job: it abstracts away all issues of overflow, making
it easier to design numerical abstract domains. However, several improvements are possible,
improving either the precision or the efficiency.

Using temporaries for sub-expressions

The translation of an expression involves issuing several queries to the undelying numerical
abstract domains. These queries ask for intervals for sub-expressions (in order to renormalize
them), or check that a denominator cannot be 0. However, this potentially leads to a
quadratic behavior when analyzing large expressions, because the functor will issue queries
on nested sub-expressions.
To reduce the number of queries, the functor could use phantom variables as aliases for

subexpressions: before issuing a query, it would assign a fresh phantom variable the sub-
expression, perform the query on this alias, and return the alias as a translation for the
expression. The translation function modifies the ideal abstract environment by assigning
phantom variables; then the abstract transfer function (such as assign or assume) uses this
modified ideal abstract environment, and finally issues forget queries on phantom variables
used. Hence, the whole translation function is written in a state monad in order to thread
the abstract environment and manage a counter to generate fresh phantom variables.
This work has been implemented in the current version of Verasco. However, it is currently

disabled, because we observed that it actually slowed down the analysis of our examples.
Further investigation is needed to understand whether and when this optimization is useful.

Less ad-hoc mechanism for handling ambiguity

The mechanism described in Section 5.3 seems ad-hoc. It works in our tests, but it may
be imprecise on unforeseen cases. We can see two potential problems that can arise when
using this method.
First, if the inferred signedness for a variable appears to be wrong when analyzing an

assume query, for example, then the interval for this variable may not be renormalizable,
and the translation fails. However, we did not encounter a realistic code where the inferred
signedness would be wrong and where the interval for a variable would not be renormalizable.
Second, when we assign a variable [−2N−1, 2N−1 − 1] or [0, 2N − 1], we may lose some

information. We cannot lose interval information, because we check before assigning that
the known interval for a variable is ⊤. However, we may lose congruence information or
relational information that may be crucial. The same problem occurs when an expression
cannot be renormalized: it is then replaced with an interval, and all the congruence and
relational information is lost.
We are still looking for a less ad-hoc mechanism. Perhaps a promising idea is to replace

those signedness range intervals with a modulo operator: that is, when an expression e

119

Chapter 5. Handling Machine Arithmetic

cannot be properly renormalized, we can replace it with e mod 2N , so that at least the
congruence information is kept.
Another improvement could come from modifications of the C#minor language, together

with modifications of the CompCert front-end: indeed, if C#minor variables were annotated
with signedness hints inferred from C source types, the analyzer would rely much less on
ad-hoc signedness inference. Similarly, Verasco would benefit from integer literals being
represented in C#minor as Z integers as in the C source instead of 32-bit integers that do
not carry signedness information: as an example, Verasco could treat differently the 32-bit
integer literals -1 and 0xFFFFFFFF, that are semantically equivalent but are typically used
in different signedness contexts.

Translating and error checking as two different processes

In the current version, the translation mechanism and the error checking mechanism are
done in one single recursive function. This means that when executing the noerror primitive
of the machine arithmetic interface, the whole expression is translated, even if it cannot
syntactically raise an error. Conversely, when translating an expression for an assignment,
for example, the error checking is performed even if the result is being ignored.
Translating an expression and checking for error are potentially costly operations, because

they imply calling primitives of the underlying numerical abstract domain. That is why it
should be possible to only translate the relevant sub-expressions when checking for errors
and to skip all the error checking when the expression only uses safe constructs.

120

Chapter 6
Non-Relational Numerical Abstract
Domains

Non-relational numerical abstract domains in Verasco include intervals over integers and
floating-point numbers and arithmetical congruences. They both play an essential role:
the interval abstract domain is the only one handling all the arithmetic constructs of the
language, and the arithmetic congruence abstract domain is able to prove the alignment
properties for array accesses, that are required in the C#minor semantics via the CompCert
memory model.
Both these domains share a common part, independent of the non-relational abstract

domain: indeed, a non-negligible part of the implementation involves traversing expressions
and manipulating maps of abstract values, which is not specific to a particular non-relational
abstract domain. This part is implemented as a functor transforming an interface for
non-relational abstract domains over ideal arithmetic to the interface of possibly relational
abstract domains shown on Figure 3.9. We describe this implementation in Section 6.1.
In Section 6.2, we explain some details of our implementation of the interval abstract

domain; in Section 6.3, we do so for arithmetical congruences.

6.1. Common Non-Relational to Relational Functor

Non-relational abstract domains share a common interface, specific to them. Using an
instance of this interface, an abstract domain functor builds a non-relational abstract domain
that meets the relational interface ab_ideal_env of Figure 3.9. This idea was already present
in unverified static analyzers such as Astrée and in previous formalizations of abstract
interpretation (by Pichardie [Pic05], for example), or in the early stages of the development
of Verasco [BLMP13]. The version we present here is modernized in order to adapt to some
features of Verasco. As an example, it is made more flexible with respect to communication
channels.
The interface provides a type of abstract values Val, with a concretization to concrete val-

ues (as an instance of gamma_op Val ideal_num). The abstract environment is then defined
using functional maps from variables to such abstract values:

Definition t := Tree.t Val.

121

Chapter 6. Non-Relational Numerical Abstract Domains

Reading such a map returns an element of Val+⊤: if reading returns All, this represents the
absence of a mapping, i.e., no information is available for the variable, and reading returns
Just x when the abstract value x is known for the variable. This helps maintaining sparse
maps, where we do not store information for unconstrained variables.

6.1.1. Pointwise Operations : ⊑, and ▽

In the non-relational numerical abstract domain interface, a comparison operator, a join
operator and a widening operator are required1:
as_leb:> leb_op t
as_join:> join_op t (t+⊤)
widen: t -> t -> t+⊤

These operators come with their specifications2:
as_leb_correct:> leb_op_correct t ideal_num
as_join_correct:> join_op_correct t (t+⊤) ideal_num
widen_incr: ∀ x y, γ x ⊆ γ (widen x y)

They are used to build the corresponding operators for abstract environments: they are
applied in a pointwise manner, using a dedicated function of the map library. In these
abstract domains and for these operations, we currently ignore message channels, query
channels and the possibility of returning a different abstract value for ▽1 and ▽2 (see
Section 3.1.2)3.
For performances, it is of paramount importance that these operations be optimized to

not iterate on shared portions of the environment, because they are most often used on very
similar environments. The importance of this optimization has already been noticed in the
design Astrée [BCC+02, CCF+09]. We will discuss how this optimization is implemented
in Verasco in Section 9.1. For now, let us just precise that this requires more properties on
the pointwise operators. Namely, and widen have to be idempotent and ⊑ reflexive:
join_idem: ∀ x:t, join x x = Just x
widen_idem: ∀ x:t, widen x x = Just x
leb_refl: ∀ x:t, leb x x = true

6.1.2. Forward Analysis of Expressions
The assign primitive is implemented using forward abstract evaluation of expressions. That
is, abstract values are propagated from expression leaves to roots, in a bottom-up manner.
To this purpose, several primitives of non-relational abstract domains are needed for the
different kinds of expression nodes.

Variables

Variables are handled by using the abstract value for the variable present in the abstract
environment4.

1For now, at this level, we do not use the type classes widen_op and widen_op_correct for widenings described
in Section 3.1.2. There is no pointwise reduction after widening, so it does not seem necessary to make
the non-relational widening return two abstract values for the moment.

2widen_incr is the Coq form of (3.7)
3However, note that this does not mean that both components of the result of a widening at the root of

the hierarchy of numerical abstract domains will contain identical non-relational information, because
the second component could have been reduced by a message coming from another domain.

4Actually, the implementation uses a second-order forward_var primitive implemented by the non-relational
abstract domain, to allow, if needed, to use the query channel to refine this abstract values, and even

122

6.1. Common Non-Relational to Relational Functor

Constants and intervals

Constant and interval nodes are handled using primitives converting concrete values and
intervals of Z into abstract values:

const: ideal_num -> Val+⊤
z_itv: zitv -> Val+⊤
const_correct: ∀ n, n ∈ γ (const n)
z_itv_correct: ∀ i, γ i ⊆ (γ (z_itv i) ∘ INz)

Operators

Unary and binary operators are handled using dedicated abstract transfer functions:

forward_unop: i_unary_operation -> Val+⊤ -> Val+⊤+⊥
forward_binop: i_binary_operation -> Val+⊤ -> Val+⊤ -> Val+⊤+⊥

They take as parameter the operator involved, and abstractions of the value of operands.
They return an abstraction of the value of the result of the operation. Their specifications
follow:

forward_unop_sound: ∀ op x x_ab,
x ∈ γ x_ab ->
eval_iunop op x ⊆ γ (forward_unop op x_ab)

forward_binop_sound: ∀ op x x_ab y y_ab,
x ∈ γ x_ab -> y ∈ γ y_ab ->
eval_ibinop op x y ⊆ γ (forward_binop op x_ab y_ab)

where eval_iunop and eval_ibinop are the concrete semantics of unary and binary operators,
respectively.

Abstract evaluation of expressions

A straightforward implementation of the abstract evaluation of expressions would be defined
by induction on the expression, returning the abstract value of the given expression and using
at each node the corresponding primitive of the non-relational abstract domain interface.
However, as we will see, the backward analysis of expressions requires forward abstract

values for many nodes5, hence a form of memoization is preferable. Indeed, the time of
the forward analysis of a sub-expression is linear over the size of the sub-expression, which
leads to a total quadratic backward analysis time if no computation is shared. A solution
would be to implement the smart approach described in Section 9.4.1, but this requires
hash-consing of ideal expressions, which is heavy and thus left as future work.
Instead, we decided that the forward analysis of expressions produces a tagged expression.

Such a tagged expression shares the same structure as the corresponding expression, but
embeds tags containing the abstract value of each node. The definition of the type of
tagged expressions uses an inductive definition following the structure of ideal expressions,
and encoding as a dependent type the constraint that it is equivalent to the untagged
expression:

Inductive tagged_iexpr : iexpr -> Type :=
| IEvar_tag:

Val+⊤+⊥ ->
∀ ty x, tagged_iexpr (IEvar ty x)

to analyze recursively an expression returned by the get_eq_expr query channel. This is provided for
symmetry with the backward analysis, and is not used currently.

5This is necessary for children of binary operators, and it does not hurt for children of unary operators.

123

Chapter 6. Non-Relational Numerical Abstract Domains

| IEconst_tag:
Val+⊤+⊥ ->
∀ n, tagged_iexpr (IEconst n)

| IEZitv_tag:
Val+⊤+⊥ ->
∀ i, tagged_iexpr (IEZitv i)

| IEunop_tag:
Val+⊤+⊥ ->
∀ op {e}, tagged_iexpr e -> tagged_iexpr (IEunop op e)

| IEbinop_tag:
Val+⊤+⊥ ->
∀ op {e1 e2}, tagged_iexpr e1 -> tagged_iexpr e2 ->

tagged_iexpr (IEbinop op e1 e2).

The abstract evaluation of expressions consists in building a valid tagged expression for
the given expression, by structural induction over the expression structure. The correctness
of this evaluation function states that any node is tagged with an abstract value that is an
abstraction of the set of values of the corresponding sub-expression.

6.1.3. Implementation of assign

The implementation of assign for non-relational abstract domains consists in first doing a
forward evaluation of the right hand side and then using the root tag as the new abstract
value associated with the left hand side in the abstract environment.
The second step consists in optionally computing a message to send via the message

channel. (For example, the interval abstract domain being the only one handling all arith-
metic constructs, it sends a message after each assignment to other domains to share the
result of its computation.) Forging this message depends on the particular domain, hence
a dedicated primitive of non-relational abstract domains is used for this purpose:

assign_msgs: var -> Val -> messages_chan
assign_msgs_sound: ∀ x v ρ,

ρ x ∈ γ v -> ρ ∈ γ (assign_msgs x v)

6.1.4. Backward Analysis of expressions

When analyzing an if statement, we have already explained in Section 3.3.1 that a Fact_msg
is sent to numerical abstract domains. Analyzing such a message is like executing an
assume primitive in traditional implementations of abstract domains: as much information
as possible needs to be extracted from the fact that the expression in question evaluates to
the given value.
The way this is usually done is by backward analysis of the expression: abstract values

are propagated from the root (where the information is known using the message) to the
leaves (where the information can be stored in the abstract environment).
So, when analyzing backward a binary operator, an abstract value is known for the

result of the operation, and we need to compute one for operands. However, for most
binary operators, this process is not possible without an abstract value for the operands
themselves. As an example, from the fact that x+ y ∈ [0, 10], it is not possible to infer an
interval for x without any information on y.
This leads us to conclude that a forward analysis needs to be done before any backward

analysis. The backward analysis itself is done by recursion over the tagged expression built
by the forward analysis: additionally, it takes as parameter the abstract value known for
the root of the expression, and the abstract environment being refined by the backward

124

6.1. Common Non-Relational to Relational Functor

analysis. It returns the refined abstract environment. All the computations are done in the
+⊥ monad, to take into account the possibility of discovering a contradiction.

Backward analysis of leaves

When reaching a variable, we need to refine the abstract value present in the abstract
environment using the abstract value guessed by the analysis. To this end, we require the
non-relational abstract domain to have a operator, using the already defined type classes:

as_meet:> meet_op t (t+⊥)
as_meet_correct:> meet_op_correct t (t+⊥) ideal_num

This operator is also used during the traversal of any node, to make sure the backward pass
has always at least as much information as the forward pass: when entering any node (even
non-leaf), the current abstract value is refined using by the abstract value of the forward
pass.
Apart from this refinement, that can reveal a contradiction, no operation is done for the

backward analysis of constant and interval leaves.

Backward analysis of unary operators

The backward analysis of unary operators uses a dedicated primitive of the non-relational
abstract domain, and then calls the backward analysis function recursively on the sub-
expression. The primitive in question has the following type and specification:

backward_unop: i_unary_operation -> t+⊤ -> t+⊤ -> t+⊤+⊥
backward_unop_sound: ∀ op x x_ab res res_ab,

x ∈ γ x_ab -> res ∈ γ res_ab ->
eval_iunop op x res ->
x ∈ γ (backward_unop op res_ab x_ab)

That is, it takes as parameters the considered operator, an abstract value for the result,
an abstract value for the operand, and returns a possibly refined abstract value for the
operand6.

Backward analysis of binary operators

Similarly to unary operators, the backward analysis of binary operators uses a dedicated
procedure of the underlying non-relational abstract domain:

backward_binop: i_binary_operation -> t+⊤ -> t+⊤ -> t+⊤ -> (t+⊤*t+⊤)+⊥
backward_binop_sound: ∀ op x x_ab y y_ab res res_ab,

x ∈ γ x_ab -> y ∈ γ y_ab -> res ∈ γ res_ab ->
eval_ibinop op x y res ->
(x, y) ∈ γ (backward_binop op res_ab x_ab y_ab)

After calling this transfer function, the backward analysis does two recursive calls, one for
each of the two operands. The abstract environment is threaded, so that the information
collected on both branches will be available at the end of the analysis.

6The passed abstract value for the operand, is not necessarily taken into account, and is provided only in
the case of need. Indeed, as we have already explained, the recursive call will anyway meet it with the
result, to make sure no information is lost.

125

Chapter 6. Non-Relational Numerical Abstract Domains

Customizing the processing of variables

When handling a variable during a backward analysis, we need to perform various domain-
dependent actions. In particular, we may want to query various query channels in the hope
of refining again the inferred abstract value. In particular, a non-relational abstract domain
may decide to unfold a variable using get_eq_expr and analyze recursively the unfolded
expression. To this end, the non-relational abstract domain has to provide a function that
is called whenever encountering a variable. This function can call recursively the forward
and backward analyzers, and refine the abstract value associated to the variable in question.

Sending messages after a backward analysis

After a backward analysis, the non-relational abstract domain may send messages based on
the result. To this purpose, at the end of a backward analysis, the functor calls a dedicated
primitive of the non-relational domain for every variable whose abstract value has been
refined. This primitive can create messages containing the new information concerning the
variable of the expression.

6.1.5. Receiving Messages
Some messages are treated directly by the non-relational functor: Fact_msg messages,
that come from the analysis of if statements, trigger a backward analysis; the value of
Known_value_msg messages is converted to an abstract value using the const primitive, and
then used to refine the abstract environment.
Additionally, the non-relational abstract environment provides a process_msg primitive

to process messages in a specialized way. This primitive is passed the forward and backward
analysis functions to make it able to access the abstract environment.

6.2. Interval Abstract Domain
Intervals are one of the most commonly used abstract domains in literature. They have
been introduced very early by Cousot and Cousot [CC76], and are a basis for designing an
abstract domain on numerical properties of programs.
In our setting, we need an interval abstract domain able to give precise bounds to ideal

integer arithmetic and IEEE 754 double precision floating-point arithmetic. The abstract
domain should provide both forward and backward primitives for most of the operators of
the arithmetic.
The type of intervals is defined in Coq using the following inductive types:

Inductive zitv :=
| ZITV: Z -> Z -> zitv.

Inductive fitv :=
| FITV: float -> float -> fitv.

Inductive iitv :=
| Az : zitv -> iitv
| Af : fitv -> iitv.

That is, an interval is either an integer interval or a floating-point interval. An integer
interval is a pair of two elements of Z, while a floating-point interval is a pair of two
floating-point numbers. The concretization functions for the types zitv, fitv and iitv are
as expected, taking bounds in the large sense:

126

6.2. Interval Abstract Domain

Instance gamma_zitv : gamma_op zitv Z := fun i v =>
let 'ZITV m M := i in
m <= v <= M.

Instance gamma : gamma_op fitv float := fun i v =>
let 'FITV m M := i in
Fleb m v = true /\ Fleb v M = true.

Instance itv_num_gamma : gamma_op iitv ideal_num := fun v x =>
match v, x with
| Az v, INz x => x ∈ γ v
| Af v, INf x => x ∈ γ v
| _, _ => False
end.

We informally maintain the invariant that an interval is never empty: that is, upper
bounds are always larger than lower bounds, and floating-point bounds cannot be NaN. The
floating-point bounds of a floating-point interval need not be finite: a floating-point interval
can contain IEEE 754 infinities. Depending on the context, we can add top or bottom
elements using the itv+⊤, itv+⊥ and itv+⊤+⊥ types.
Note that there is no interval of all values for integers nor for floating-point numbers: the

bounds of integer intervals are necessarily finite, and NaN values are not in any floating-point
interval. This is partly justified by the fact that types are always known from the context,
so we do not lose precision by using a common ⊤ abstract value. It is also worth noting it
is unnecessary to represent semi-bounded integer intervals, because they do not correspond
to any meaningful property on machine integers.
The definition of the leb, join and meet functions are very standard, and need not be

detailed here. As for the widening, we use the widening to ±∞ for floating-point intervals,
and the widening with thresholds [CCF+09] for integer intervals. The list of thresholds
is extendable, but, for now, we use the bounds of the CompCert C integer types. Those
widening strategies can be improved, both for precision and performance: we leave as future
work the experimentation needed to find a good compromise.
We have defined the abstract transfer functions of the different operators using the ap-

propriate abstract types, and then defined the “untyped” abstract transfer functions by
projecting iitv abstract values to zitv+⊥ or fitv+⊥, calling the typed transfer function and
then using either Az or Af.

6.2.1. Integer Arithmetic

Transfer functions for arithmetic operators on integer intervals are fairly standard and well-
known [Min04, Pic05]. Without entering into the details, we give here a brief summary.
Concerning addition, subtraction, negation and multiplication, we have the following

properties, assuming x ∈ [x−; x+], y ∈ [y−; y+] and r ∈ [r−; r+]:

x+ y ∈ [x− + y−; x+ + y+] (6.1)
−x ∈ [−x+; −x−] (6.2)

x− y ∈ [x− − y+; x+ − y−] (6.3)

xy ∈ [min{x−y−, x−y+, x+y−, x+y+};
max{x−y−, x−y+, x+y−, x+y+}] (6.4)

r = x+ y ⇒ x ∈ [r− − y+; r+ − y−] (6.5)
r = x+ y ⇒ y ∈ [r− − x+; r+ − x−] (6.6)

127

Chapter 6. Non-Relational Numerical Abstract Domains

r = −x ⇒ x ∈ [−r+; −r−] (6.7)
r = x− y ⇒ x ∈ [r− + y−; r+ + y+] (6.8)
r = x− y ⇒ y ∈ [x− − r+; x+ − r−] (6.9)

We can easily deduce forward abstract transfer functions for addition, negation, subtraction
and multiplication, together with backward transfer functions for addition, negation and
subtraction.
Concerning the forward abstract transfer function for multiplication, a special case is

handled when no information is known for one multiplicand but 0 is the only possibility for
the other multiplicand, in which case the resulting interval is the singleton 0.

Integer division

We do not implement currently a backward transfer function for division7. For the forward
transfer function8, we first consider the case where 0 < y− ≤ y ≤ y+. In this case we have:

x÷ y ∈

[
x− ÷ y− if x− < 0

x− ÷ y+ otherwise
;

x+ ÷ y+ if x+ < 0

x+ ÷ y− otherwise

]
(6.10)

The case where y− ≤ y ≤ y+ < 0 is treated symmetrically, by using the fact that
x÷ (−y) = −(x÷ y).
The general case is handled by splitting the interval for y into three parts: the negative

part, the null part (whose only element necessarily leads to an error, so the computed
abstract value is ⊥), and the positive part. The intervals for the results of each of these
parts are joined, leading to the global result.
Again, special cases are treated if either operand is known to be equal to 0, so that no

precision is lost even if the other interval is ⊤.

Integer modulo

We did not implement a backward transfer function for the modulo operation. As for the
forward transfer function, integer modulo9 is treated by splitting not only on the interval
for y, but also on the interval for x. So, we first assume that 0 < x− ≤ x ≤ x+ and
0 < y− ≤ y ≤ y+. We have:

x mod y ∈

[
x− if x+ < y−

0 otherwise
; min{y+ − 1, x+}

]
(6.11)

This interval is not always the best one: the best transfer function would involve rather
complex computations and arithmetic proofs. However, we believe it captures important
properties of the modulo operation: namely, it is always included in [0, y+ − 1], and, if it is
known that x < y, then the interval for the result is equal to that of x.

7Their is no theoretical reason for this limitation: it could be implement without much effort, but this
requires lengthy arithmetic proofs, and this rarely improves the precision in practice, because division
rarely appears in tests.

8The version of division we use is the one used in the C99 standard [ISO99] and in CompCert. This is the
division with rounding towards 0, implemented in Coq’s Z.quot function. We note it ÷.

9The variant of the modulo we use, as in the C99 standard [ISO99] is such that a = b(a÷ b) + a mod b. It
is implemented in Coq using the Z.rem function.

128

6.2. Interval Abstract Domain

The general case is treated by splitting the intervals for x and y, depending on the signs
of x and y. We use the two following properties of the modulo operator of the C language:

x mod (−y) = x mod y (6.12)
(−x) mod y = −(x mod y) (6.13)

Backward transfer function for multiplication in Z

Again, the backward transfer function for multiplication is built by splitting the intervals
using signs. Let us consider the case where we want to compute an interval for x, given
an interval [y−; y+] for y and an interval [r−; r+] for r. By splitting the interval for y
depending on its sign, we can assume without loss of generality that 0 < y− ≤ y ≤ y+ (the
case where y = 0 is trivial, and the negative case is symmetric).
The following interval is used as a partial backward transfer function for multiplication

when 0 < y− ≤ y ≤ y+:

x ∈

⌈
r−

y−

⌉
if r− < 0⌈

r−

y+

⌉
otherwise

;

⌊
r+

y+

⌋
if r+ < 0⌊

r+

y−

⌋
otherwise

 (6.14)

Integer comparisons

Integer comparisons at the ideal numerical level are binary operators that return either 0
or 1. They are either a strict inequality test, a loose inequality test, an equality test or a
disequality test.
The backward analysis of comparisons first reduces to the case where the result interval

is [1; 1]. This can be done easily, because the set of possible comparisons is stable by
negation. So, let us consider the case where we know x ∈ [x−; x+], y ∈ [y−; y+] and x ⋄ y
for ⋄ ∈ {<,>,≤,≥,=, ̸=}. The objective is to deduce a new interval on x and y. We consider
only the case of finding an interval for x (y is handled by symmetry). Moreover, recall the
backward analysis engine will meet this new interval with the old interval [x−; x+], so that
we do not fear losing information on x. The backward transfer function is directly deduced
from the following properties:

x = y ⇒ x ∈ [y−; y+] (6.15)

x ≤ y ⇒ x ∈

{
⊥ if y+ < x−

[x−; y+] otherwise
(6.16)

x ≥ y ⇒ x ∈

{
⊥ if x+ < y−

[y−; x+] otherwise
(6.17)

x < y ⇒ x ∈

{
⊥ if y+ − 1 < x−

[x−; y+ − 1] otherwise
(6.18)

x > y ⇒ x ∈

{
⊥ if x+ < y− + 1

[y− + 1; x+] otherwise
(6.19)

129

Chapter 6. Non-Relational Numerical Abstract Domains

x ̸= y ⇒ x ∈

⊥ if y− = y+ = x− = x+

[x− + 1; x+] if y− = y+ = x− < x+

[x−; x+ − 1] if y− = y+ = x+ > x+

⊤ otherwise

(6.20)

The forward analysis of comparison is built using the backward analysis: to compute the
result of the forward analysis of a comparison, we do two backward analyses using [0; 0] and
[1; 1] as result intervals. The result of the forward analysis is then computed by joining the
result intervals whose backward analysis is non-contradictory.

6.2.2. Bitwise Operators

Bitwise operators at the ideal numerical level of Verasco operate on the binary representation
of integers, completed by an infinite stream of 0 for non-negatives and using 2’s complement
negation for negatives.
In this section, we will use the syntax of the C language as notations for bitwise operations:

~ for bitwise negation, & for bitwise and, | for bitwise or, ∧ for bitwise exclusive or and ≫
and ≪ for right and left shifts, respectively.

Bitwise negation

Because of the definition of 2’s complement negation, the bitwise negation is easily expressed
in terms of the arithmetic negation:

~x = −x− 1 (6.21)

This leads us to an easy, precise transfer function for bitwise negation. Moreover, bitwise
negation is involutive, so the same transfer function can be used as a backward transfer
function.

Left and right shifts

Left shift and right shift can be interpreted as the multiplication or division by the power of
2 of the right operand, thus a precise transfer function for left and right shift is built using
similar techniques as for multiplication and division10. However, we did not implement a
backward transfer function for shifts.

Bitwise and, or, and exclusive or

Other bitwise operations are more complex to handle. We did not implement the best pos-
sible abstraction even in the forward case. Instead, we preferred a simpler forward transfer
function, that is still relatively precise: its precision is enough to propagate constants. We
did not implement a backward transfer function for these operations.
We focus here on the approximation of the & operation applied to non-negative operands.

The full transfer functions for & and | are deduced from this transfer function by splitting
the intervals of the operands depending on their signs (like for division), treating the highest
order bits separately (their value is fixed by the sign), and using the De Morgan’s laws. The

10Special care must be taken, however, for the right shift operator, that do not use the same rounding mode.

130

6.2. Interval Abstract Domain

exclusive or operation is (imprecisely) handled by the formula:

x ∧ y = (x&~ y)|(~x& y) (6.22)

The transfer function for & on positive inputs x ∈ [x−; x+] and y ∈ [y−; y+] proceeds
as follows:

• Count the number of high-order bits common to x− and x+. These bits determine
the high-order bits of x.

• Do similarly for y.

• Deduce the high-order bits of x& y corresponding to bits known for both x and y by
the previous steps. These bits are used as the high-order bits of the lower and upper
bounds for x& y, so it suffices to compute an interval for the low-order bits of x& y.

• A lower bound for the low-order bits of x& y is given by 0.

• The low-order bits of x& y have always fewer bits at 1 than those of x and y, so the
higher bound on the low-order bits of x and y can both be taken as a high bound for
x& y: we take the smallest one.

6.2.3. Forward Transfer Functions for Floats

In CompCert, the semantics of floating-point computation is based on the Flocq library by
Boldo and Melquiond [BM11, BJLM13, BJLM15]. This is a rigorous formalization, using
the Coq proof assistant of IEEE 754 floating-point arithmetic. As a restriction to C99, the
semantics of CompCert only supports the round-to-nearest mode for all the operations: we
stick to this choice and assume the given program only uses round-to-nearest mode.

Arithmetic operators

In the following, we note double precision floating-point arithmetic operations with round-
to-nearest mode, using the corresponding operator, with a circle around (e.g., floating-point
addition is noted ⊕).
Even if the IEEE 754 arithmetic operations have complex and non-intuitive properties in

general, they obey similar monotonicity properties as those of R. That is, if we check that
the input intervals guarantee that the result is not a NaN (in which case we have no other
choice than returning ⊤), then we can use the intuitive transfer function that could be used
in R. That is, under the assumptions x ∈ [x−; x+] and y ∈ [y−; y+], we have:

notNan(x⊕ y) ⇒ x⊕ y ∈ [x− ⊕ y−; x+ ⊕ y+] (6.23)
⊖x ∈ [⊖x+; ⊖x−] (6.24)

notNan(x⊖ y) ⇒ x⊖ y ∈ [x− ⊖ y+; x+ ⊖ y−] (6.25)

notNan(x⊗ y) ⇒ x⊗ y ∈ [min{x− ⊗ y−, x− ⊗ y+, x+ ⊗ y−, x+ ⊗ y+};
max{x− ⊗ y−, x− ⊗ y+, x+ ⊗ y−, x+ ⊗ y+}] (6.26)

131

Chapter 6. Non-Relational Numerical Abstract Domains

notNan(x⊘ y) ⇒ x⊘ y ∈

[−∞; +∞] if 0 ∈ [y−; y+]

[
min

{
x− ⊘ y−, x− ⊘ y+

x+ ⊘ y−, x+ ⊘ y+

}
;

max
{
x− ⊘ y−, x− ⊘ y+

x+ ⊘ y−, x+ ⊘ y+

}] otherwise
(6.27)

These properties are used directly as forward transfer functions for floating-point operations.
The notNan checks are performed by a careful case analysis on the different possible forms
of x and y.

Conversions operators

In the ideal expressions of Verasco, there are still various conversion operators: from floating-
point numbers to Z, from Z to double precision, from Z to single precision, and from double
precision to single precision11.
Once ruled out the possibility of an error during the conversion12, it is easy to give an

interval for the result, because all these conversions are increasing functions, so it suffices to
compute the conversion on each interval bound (using, obviously, the rounding mode used
at runtime by the program: round-to-nearest when the result is a floating-point number,
round-towards-zero when it is an integer).

Comparisons

Similarly to integers, we use the backward transfer function for floating-point comparison
to build the forward transfer function.

6.2.4. Backward Transfer Functions for Floating-Point Arithmetic

We have implemented and proved correct floating-point backward transfer functions for
addition, subtraction, comparisons, negation and all the conversion operators. Backward
analysis for multiplication and division are left as future work.
Apart from negation, whose backward transfer function is identical to the forward one

(because of its involutiveness), all the backward transfer functions rely on two functions,
next_ulpd and next_ulps. The former returns the double precision floating-point number
immediately following its argument. More precisely, when given a non-NaN double precision
floating-point number different from +∞, it returns one of the smallest13 strictly bigger
double precision floating-point numbers. next_ulps is its single precision version. The
symmetric operations, computing the immediately preceding floating-point number, are
obtained by pre- and post-composing with floating-point negation.

11Every single precision floating-point number can be exactly represented as a double precision floating-
point number. In order to avoid dealing with two different types of floating-point numbers at the ideal
numerical level of Verasco, operators returning a single precision floating-point numerical actually return
its representation as a double precision floating-point number. See Chapter 5.

12This can occur only when trying to convert a non-finite floating-point number to Z, which is easily checked
by checking the finiteness of the input interval bounds.

13There may be several ones, because −0 and +0 are two different floating-point numbers.

132

6.2. Interval Abstract Domain

Floating-point operations and conversions

Most floating-point operations are defined as an optional mathematical operation (that can
be the identity) followed by a rounding. In the case of arithmetic operations (e.g., addition
and subtraction), the double precision round-to-nearest rounding is used. In the case of
conversions, depending on the case, either the single or double precision round-to-nearest
rounding or the integer round-to-zero rounding is used.
Thus, our strategy for the backward analysis of floating-point operations proceeds in two

steps: first, we do a backward analysis of the rounding, and then we do a backward analysis
of the mathematical operation.
The interval used between the two steps is an abstraction of the theoretical result of the

mathematical operation in R∪{−∞; +∞}. The first step does as follows, depending on the
rounding involved (we assume the result is r ∈ [r−; r+]):

• [−next_ulpd(−r−); next_ulpd(r+)] for double-precision round-to-nearest;

• [−next_ulps(−r−); next_ulps(r+)] for single-precision round-to-nearest;

•
[

r− if r− > 0

r− − 1 otherwise
;

r+ if r+ < 0

r+ + 1 otherwise

]
for integer round-to-0.

The second step consists in doing a backward analysis of the mathematical operation.
For addition and subtraction, this is done similarly to integer intervals. For conversions,
the mathematical operation is simply the identity, whose backward analysis is trivial. Note,
however, that we know that the operands are floating-point numbers (or an integer, for the
conversions from Z), thus the computed bounds can be rounded towards the interior of the
interval.

Comparisons

The backward analysis of floating-point comparisons is done in a very similar way as for
integers, therefore we will not give much detail here. However, it is worth noting two
differences. First, it is incorrect to say that the set of floating-point comparisons is stable
by negation, because of NaNs, which do not compare with any floating-point number, even
themselves14. Therefore, it is necessary to consider separately each pair of a comparison
mode and a Boolean result. Second, for strict comparisons and disequality, the incrementing
and decrementing of the bounds are replaced by proper uses of next_ulpd.

6.2.5. Cooperation with Other Domains
The interval abstract domain cooperates using message and query channels with the rest of
the hierarchy. Those cooperations are of several kinds: the abstract domain is able to send
information to other domains, but also to use some information given by other domains.

Providing information to other domains

After a backward analysis or after processing an assignment, the interval abstract domain
sends a Itv_msg message for each variable whose abstract value has changed. There is a
special case when the new interval is a singleton, in which case, instead, it broadcasts a
Known_value_msg message. The interval abstract domain is the only one being able to handle
14Regarding NaNs, floating-point numbers have strange properties: for example, we do not have the property

∀x, x =f x, where =f is the floating-point equality test. This property is wrong if x is a NaN.

133

Chapter 6. Non-Relational Numerical Abstract Domains

all arithmetic constructs: these pieces of information are useful to, e.g., the congruence
abstract domain and the octagon abstract domains, when the use of unsupported constructs
leads to imprecision.
The interval abstract domain is also able to answer get_itv queries: they are processed by

a forward analysis of the given expression. This query channel has several uses: it is used,
for example, by the analyzer front-end to enumerate the values an expression can take, by
the machine arithmetic functor to check for overflows, and by the expression linearization
to give bounds to factors of a multiplication.

Refining intervals using the congruence information

The interval abstract domains cooperates with the congruence abstract domain to build a
weak reduced product: each time a new interval is learned for a variable by a backward
analysis, the interval abstract domain asks the get_congr channel and uses the following
property to refine this interval:{

x ∈ [a, b]

x mod m = r
⇒ c ∈ [a+ (r − a) mod m; b− (b− r) mod m] (6.28)

Additionally, this property is used when receiving a Congr_msg message.

Unfolding variables

When doing a backward analysis, some more information may be recovered by unfolding
variables using the get_eq_expr channel (answered by the domain of symbolic equalities).
When reaching a variable during the backward analysis of an expression, the interval ab-
stract domain tries to unfold this variable and do a backward analysis of the unfolded
expression. This process is continued until a predefined depth.

Receiving Itv_msg messages

Other domains, like the octagon abstract domain, can send Itv_msg messages. These mes-
sages can contain information that the interval abstract domain does not have, because of
its non-relational nature, for example. These messages are handled by the interval abstract
domain, and help refine the abstract values it contains.

6.3. Arithmetical Congruences

The other non-relational abstract domain formally verified in Verasco is the domain of
congruences. The idea of a congruence abstract domain is not new: it has been first
proposed by Granger in 1989 [Gra89]. This domain is essential in Verasco, because memory
accesses in the CompCert memory model need to be aligned, so the memory abstract domain
has to check alignment constraints. In Verasco, this domain has been mainly contributed
by Vincent Laporte: for the sake of completeness, we give here a rough description.
The principle is as follows: in an abstract value, we store two integers M ∈ N and R ∈ Z

such that if M > 0, then 0 ≤ R < M . The set of integer values x represented by such a
pair of integers is such that x ≡ R mod M , or, equivalently:

∃k, x = R+ kM (6.29)

134

6.3. Arithmetical Congruences

The case M = 0 corresponds to a singleton concretization (x = R), and the case M = 1
correspond to ⊤15.
In Coq, a congruence abstract value is described by the following record type:

Record zcongr := ZC {
zc_rem : Z;
zc_mod : N;
zc_rem_itv : (zc_mod > 0)%N -> 0 <= zc_rem < zc_mod

}.

We can easily give it a concretization function in Z:
Instance zc_gamma : gamma_op zcongr Z := fun ab z =>

∃ q, z = ab.(zc_rem) + q * ab.(zc_mod)

It can be easily extended to any ideal number, by stating that such an abstract value never
concretizes to floating-point numbers:
Instance zc_ideal_gamma : gamma_op zcongr ideal_num := fun ab x =>

match x with
| INz z => z ∈ γ ab
| INf _ => False
end.

That is, in the abstract environment (that contains abstract values of type zcongr+⊤)
floating-point variables are always associated to All (i.e., the ⊤ element of zcongr+⊤).
We will not enter much more into the details of the implementation of this abstract

domain, and refer the interested reader to the implementation. It contains the required
lattice operations: join, meet and leb. The domain does not contain infinite increasing
chains, therefore we can use join as a widening. It also contains abstract transfer functions
for most of the basic arithmetic operators.
Finally, this domain is able to cooperate with other domains: additionally to the cooper-

ation features provided by the non-relational abstract domain functor, it answers get_congr
queries, and sends Congr_msg messages when a new piece of congruence information is
learned on a variable (either by assignment or after a backward analysis).

15In this case, we have necessarily R = 0, so we have a unique top abstract value.

135

Chapter 7
Symbolic Equalities

Verasco contains an abstract domain of symbolic equalities. This domain improves the
precision of many other abstract domains: this technique is a well-known technique to
improve the precision of static analyses. It has already been implemented in the context
of Astrée [Min04, Min06b], in conjunction with linearization techniques similar to those
presented in Section 8.1. The static analyzer Clousot, used to analyze .Net code, also uses
some form of symbolic equalities to recover the loss of precision resulting from the analysis
of pre-compiled code [LF08a].
In the context of Verasco a pre-compilation phase, done by CompCert’s front-end pulls

side effects out of expressions. Even if this is desirable for Verasco, this program transfor-
mation can hurt precision. An important case is the analysis of Boolean operators: because
these operators are lazy in C1, they carry a form of side effect, which is not allowed in
C#minor expression. As a result, the compiler front-end will remove uses of such opera-
tors, using if statements and temporary variables. As an example, consider the following
C code fragment:

if(a > 0 && b > 0) { [...] }

The CompCert front-end will transform it into a C#minor equivalent of the following:

if(a > 0) tmp = b > 0;
else tmp = 0;
if(tmp) { [...] }

which is difficult to analyze precisely as-is: without unfolding variables, the backward anal-
ysis of intervals presented in Section 6.1.4 will not be able to deduce anything more precise
than tmp ∈ [1; 1] at the entry of the body of the if statement (which is useless, because tmp
is not used anywhere else). Instead, at this point, we expect the analyzer to refine the
abstract values of a and b, to reflect the fact that a > 0 and b > 0. This is, in fact, very
similar to the situation of Clousot [LF08a]: this analyzer uses .Net bytecode as its input
language. There is no structured expression in .Net bytecode, therefore the contents of tests
have to be decompiled by Clousot.

1That is, the evaluation of a && b will not trigger the evaluation of b if a evaluates to 0; and the evaluation
of a || b will not do so for b if a evaluates to a non-zero integer.

137

Chapter 7. Symbolic Equalities

Even if the code does not use Boolean operators, an abstract domain of symbolic equalities
can still be useful: a common case is when the programmer uses temporary variables. As
an example, consider the following piece of C code:

int b = verasco_any_int();
verasco_assume(0 < b && b < 1000);
int a = b*2;
if(a < 10) {

verasco_assert(b < 5);
}

Here, some information learned on variable a (a < 10) leads to some new information
on b (b < 10). However, the backward analysis of the test only does not bring any new
information on b. To do so, some kind of relational information between a and b is needed.
A weakly relational abstract domain, like octagons (see Section 8.3) is of no help here,
because the linear relationship between a and b is not necessarily in the form the weakly
relational supports. A solution would be to use a polyhedron abstract domain, but it has
a high computational cost. Instead, an abstract domain of symbolic equalities stores the
equality a = 2b, which is unfolded when analyzing the condition.
In the context of Astrée, Miné [Min06b] explains that some kind of symbolic equalities

can be used when linearizing equations in order to improve precision. This feature is not
currently implemented in Verasco, yet we do not foresee any serious difficulty.

7.1. Abstract Environments and their Concretization

Our abstract domain of symbolic equalities stores two kinds of information. First, it stores
equalities between a variable and an expression. These equalities are unfolded by the back-
ward analysis of expressions to improve precision. In order to get good precision for the
analysis of Boolean operators, the type ideal_expr of ideal expressions is not enough, be-
cause it does not include any Boolean construct. We use a different type, ite_iexpr, adding
if-then-else selectors in prenex position:

Inductive ite_iexpr : Type :=
| Leaf : iexpr -> ite_iexpr
| Ite : iexpr -> ite_iexpr -> ite_iexpr -> ite_iexpr.

Their semantics is defined in a big-step style, by the eval_ite_iexpr inductive predicate,
similarly to iexpr expressions: Leaf nodes evaluate as their child, and Ite nodes evaluate
like their second or third child, depending on whether their first child evaluates to INZ 0
or INZ 1.
This new expression type makes us able to associate decision trees to variables, and, in

particular, to represent Boolean operators. Note, however, that the decision trees we store
correspond to a reality in the program, so that in practice, we avoid the exponential blowup
that typically goes with decision trees.
The second kind of information stored in this abstract domains is symbolic facts. As we

will see, they are used as conditions to build if-then-else selectors when reaching a join point
in the program. They associate an expression to a Boolean, and they represent the fact
that the expression evaluates to either INZ 0 or INZ 1.

138

7.1. Abstract Environments and their Concretization

7.1.1. Data Structures
In order to have a fast lookup mechanism, the set of symbolic facts is indexed by expressions.
This efficient map is built by computing a hash of every inserted expression, and using hashes
as indexes of an efficient map implementation over integers (we use CompCert’s tries).
When performing assign and forget operations on an abstract environment, we need to

find all the equalities and facts depending on the modified variable. In order to do that
without traversing the whole data structures, we maintain other structures able to compute
quickly this information.
In the end, the abstract domain uses several types of efficient tree-like data structures:

• MVar.t τ is the type of maps indexed by variables and containing values of type τ;

• SVar.t is the type of sets of variables;

• MExp.t τ is the type of maps indexed by expressions and containing values of type τ;

• SExp.t is the type of sets of expressions.

These basic data structures are the basic blocks needed to define the type of raw abstract
environments of the symbolic domain:
Record t0 := {

eqs : MVar.t ite_iexpr;
eqs_free : MVar.t SVar.t;
facts : MExp.t bool;
facts_free : MVar.t SExp.t

}.

It has four fields: eqs contains the equalities between a variable and an expression, and facts
contains the expressions whose value is known to be INZ 0 (i.e., the associated Boolean value
is false) or INZ 1 (i.e., the associated Boolean value is true). The two other fields, eqs_free
and facts_free associate each variable to the set of keys of entries of eqs and facts where
the variable appears.
These data structures have an invariant, stating that the eqs_free and facts_free maps

are valid. The invariant has two parts: first, the stored sets contain enough keys (we say
they are correct), second, they do not contain useless keys (we say they are complete). The
completeness property is not useful for the soundness of the abstract domain, so we only
maintain it informally, while the correctness property is formalized using the following Coq
predicate, stated using a record type:
Record t0_inv (ab:t0) : Prop := {

eqs_free_correct :
∀ x e, MVar.get x ab.(eqs) = Some e ->
∀ y, SVar.mem y (ite_iexpr_free_vars e) ->
∃ s, MVar.get y ab.(eqs_free) = Some s

/\ SVar.mem x s;
facts_free_correct :
∀ e b, MExp.get e ab.(facts) = Some b ->
∀ y, SVar.mem y (iexpr_free_vars e) ->
∃ s, MVar.get y ab.(facts_free) = Some s

/\ SExp.mem e s
}.

That is, if a stored equality or fact has a free variable, then there is a corresponding
entry in eqs_free or facts_free. This invariant uses two functions iexpr_free_vars and
ite_iexpr_free_vars, computing the set of free variables of an expression. It also uses

139

Chapter 7. Symbolic Equalities

the *.mem and *.get primitives of the sets and maps libraries, allowing to read a map and
stating membership of a set, respectively.
We then define the type of abstract environment using a subset type, containing the data

structure and the proof this data structure meets the invariant:
Definition t := {ab: t0 | t0_inv ab}.

This is the type of abstract environments that is exported to the rest of the abstract domain
hierarchy, via the ab_ideal_env type class (see Figure 3.9).

7.1.2. Concretization
The concretization of these abstract environments states that the equalities and the facts
are indeed valid. That is, the expression associated to a variable indeed evaluates to the
value of the variable, and the expressions of the facts indeed evaluate as INZ 0 of INZ 1.
As usually, this is defined as instances of the gamma_op type class, one for t0 (the type of
abstract environments not necessarily verifying the invariant) and one for t (the subset type
of t0, with a proof of the invariant)2:
Record gamm0 (ab:t0) (ρ:var -> ideal_num) : Prop := {

eqs_gamm :
∀ x e, MVar.get x ab.(eqs) = Some e -> eval_ite_iexpr ρ e (ρ x);

facts_gamm :
∀ e b, MExp.get e ab.(facts) = Some b ->

eval_iexpr ρ e (INz (if b then 1 else 0)) }.
Instance gamm0' : gamma_op t0 (var -> ideal_num) := gamm0.

Instance gamm : gamma_op t (var -> ideal_num) :=
fun ab => gamm0 (proj1_sig ab).

7.2. Lattice Operations
Top

The top element is given by a record containing empty maps: this trivially verifies the
invariant, and imposes no constraint on the concretization.

Comparisons

Comparisons between abstract environment simply check that the constraints of the right
hand side is a subset of the constraints of the left hand side: it there is a mismatch in an
expression associated to a variable, no attempt is made to prove that the expressions are
equivalent.

Join

A naive implementation of the join operation would keep only the equations and facts
present in the left hand side and the right hand side. However, this would make us unable
to properly analyze pre-compiled Boolean operators, which is one of the motivation of this
abstract domain.
Instead, we try to create new if-then-else selectors. To this end, we first search, in the

current sets of facts, for an expression that is known to evaluate to a different Boolean on
2proj1_sig: ∀ A (P:A -> Prop), {x | P x} -> A is the function of the Coq standard library that returns the

unconstrained value contained in an element of a subset type.

140

7.3. Abstract Transfer Functions and Channels

the right hand side and on the left hand side. Because facts are indexed by expressions, this
can be easily done using the shcombine_diff function described in Section 9.1 (a variant
of the combine primitive that iterates simultaneously over two maps, but exploiting the
sharing). If such an expression is found, it is used as a pivot for creating if-then-else
selectors.
If such a pivot is found, an if-then-else selector is inserted for every variable having

different equalities on each branches3. Otherwise, we discard equalities that are not common
to both branches. When an equality is available only in one branch, it is discarded, and
when the same equality exists in both branches, it is left untouched.
Facts are discarded as soon as they are not common to both branches. This happens

either when the associated Boolean is different, or when an expression is not associated to
a Boolean in either branch.
Updating the eqs_free and facts_free fields adds a non-negligible level of complexity,

that we will not detail here.

Widening

In this domain, we do not use the possibility of returning a different abstract environment
for ▽1 and ▽2 (see Section 3.1.2). The same value is returned, and the same type is used
for both components.
The implementation of the widening shares most of the code of the join operation, except

it does not try to insert if-then-else selectors, and discards facts and equations that are not
common to both operands of the widening.
This is a weak variant of the join, so (3.7) and (3.8) are clearly true. The step towards

an informal proof of (3.10) is really immediate. Moreover, the set of equations and facts
can only get smaller, so that the termination condition (3.9) is trivial.

7.3. Abstract Transfer Functions and Channels

The forget operation.

The implementation of forget needs not only remove the equation associated to the given
variable, but also all the equations and facts mentioning it. This is the purpose of eqs_free
and facts_free: finding easily the affected entries when modifying a variable.
Nonetheless, we must not omit to update eqs_free and facts_free accordingly, even for

the variables different from the one we consider: because we are removing equations and
facts, these removed entries have to be removed from sets corresponding to their other free
variables.
In order to make the domain more robust to the use of variables for intermediate compu-

tations, the abstract domain tries to substitute occurrences of the forgotten variable with
the expression it is equal to (when an expression with no if-then-else selectors is available,
and when this expression does not contain itself the variable). If the substitution leads to
an expression that is larger than a specified threshold, the equation or fact is discarded
anyway.

3We discard the equalities if the resulting expression would exceed a pre-defined threshold.

141

Chapter 7. Symbolic Equalities

The assign operation.

The assign transfer function4 first calls the forget transfer function on the assigned vari-
able, to adjust the equations and the facts mentioning it (either by discarding them or by
substituting the variable by another expression). Moreover, if the assigned variable appears
in the right hand side of the assignment, we try to substitute it as forget would. If this sub-
stitution step fails, which can happen when the resulting expression is too big or when the
variable had no expression associated to before the assignment, the abstract environment
is left as-is. That is, in this case, assign does the same thing as forget.
If the substitution step succeeds or if it is not needed, the right hand side of the assignment

is used to build a new equation for the variable. Heuristically, this step is only performed if
the expression is deterministic (i.e., it does not contain interval nodes): it is very unlikely
that a non-deterministic expression still contains useful information for this domain.

Receiving Fact_msg messages.

The only messages treated by this abstract domain are Fact_msg messages. Messages of
this kind are sent when analyzing the condition of an if statement. Similarly to the case
of assign, we ignore such messages if they contain non-deterministic expressions. Otherwise,
we store the expression as a fact5 (or generate a contradiction if the negated fact is already
present). Additionally, if the message carries the equality of a variable with an expression,
and if this variable is associated with no existing equation, then this equation is inserted.

The get_eq_expr query channel.

This abstract domain answers get_eq_expr queries by performing a lookup in the map of
equations.

7.4. Examples
In order to better understand the operation of this abstract domain, we present here a few
examples of program analyses that we find representative of its behavior. In each of them,
we briefly describe the purpose of the example, and then give a chunk of C code, commented
with the relevant information stored in the symbolic abstract domain.

Unfolding during backward analysis

Unfolding variables in conditions may improve the precision of backward analyses. In the
following, we present an example (already seen above) where this is indeed the case:

int b = verasco_any_int();
verasco_assume(0 < b && b < 1000); /* We bound b to avoid overflows. Any pair of

bounds avoiding overflows would work.*/
int a = b*2;
/* Equation: a -> b*2 */
if(a < 10) {

verasco_assert(b < 5);

4We omit the very special case where a variable is assigned to itself, in which case the abstract environment
is returned unchanged.

5Actually, some preliminar Boolean simplifications are performed on the expression, to get rid of Boolean
negation, for example.

142

7.4. Examples

}

Analysis of Boolean operators

One of the motivation of the design of this abstract domain was the precise analysis of lazy
Boolean operators of C, such as && and ||, or even ?:, the C ternary operator. To illustrate,
let us examine the analysis of the following example, which is equivalent to the analysis of
the condition 0 < b && b < 2:

int b = verasco_any_int();
int tmp;

if(0 < b) {
/* Fact: 0 < b -> true */
tmp = b < 2;
/* Equation: tmp -> b<2 Fact: 0<b -> true */

} else {
/* Fact: 0<b -> false */
tmp = 0;
/* Equation: tmp -> 0 Fact: 0<b -> false */

}
/* Equation: tmp -> if 0<b then b<2 else 0 */
if(tmp) {

/* After unfolding and analysis of tmp, we know that b==1: */
verasco_assert(b == 1);

}

Substituting in equations

For better robustness against program transformations, e.g., the use of intermediate vari-
ables, the abstract domain is able to perform substitutions in the facts and equations. We
illustrate that by the following example:

int b = verasco_any_int();
verasco_assume(0 < b && b < 1000); /* We bound b to avoid overflows. */

int a = b*2;
/* Equation: a -> b*2 */
a++;
/* Equation: a -> b*2+1 */
if(a < 11) {

verasco_assert(b < 5);
}

143

Chapter 8
Octagons and Expression Linearization
Many interesting program properties cannot be proved using only non-relational domains,
or even simple symbolic abstract domains. Instead, for many of these properties, a semantic
rather than syntactic form of relational information is needed. As a motivating example,
consider the following piece of C code:
int src[10] = { ... };
int dst[10];

int i_src = 0, i_dst = 9;
while(i_dst >= 0) {

dst[i_dst] = src[i_src];
i_dst--; i_src++;

}
verasco_assert(i_src == 10);

In this piece of code, we are copying an array into another array, reversing the order of its
contents. It uses a common pattern, where the loop is indexed using two variables, i_src
and i_dst. The former is incremented at each iteration, and the latter is decremented at
each iteration. Because both arrays have the same size, it is unnecessary to check in the loop
condition that both indices are in array bounds: only one check is necessary. Actually when
a programmer writes this loops, she implicitly uses the invariant i_src + i_dst = 9, which
the static analyzer needs to infer in order to prove correct the source array access and the
final assertion. This invariant is relational: it involves several program variables. Moreover,
it does not appear syntactically in the program, hence a symbolic abstract domain will not
be able to infer it. At the numerical level, a popular class of relational abstract domains
that would be able to infer this invariant is the class of linear abstract domains.
In general, a linear numerical abstract domain approximates a set of concrete numerical

environments, by storing a finite set of linear inequalities over the variables (Xv)v∈V . These
constraints are of the form:

α0 +
∑
v∈V

α(j)
v Xv ≤ 0 (1 ≤ j ≤ J) (8.1)

Thus, the general form of the concretization of an abstract environment, the set of values
(xv)v∈V satisfying all the constraints, is a convex polyhedron. That is why the most general

145

Chapter 8. Octagons and Expression Linearization

linear relational abstract domain is called the Polyhedron abstract domain. In order to
implement its transfer functions, this abstract domain uses algorithms taken from the field
of general linear optimization, such as the Fourier-Motzkin elimination procedure and the
Simplex algorithm.
A formally verified implementation of the Polyhedron abstract domain, for integer vari-

ables only, using the technique of a posteriori validation, has been integrated into Verasco
by Fouilhé et al. as part of the Verasco Polyhedral Library [FMP13, FB14].
However, the Polyhedron abstract domain has serious drawbacks when the number of

variables increases: the number of inequalities representing the polyhedron is not bounded,
and, in practice, it is exponential in the number of variables1[Min04]. Moreover, the im-
plementation of a Polyhedron abstract domain over floating-point numbers is challenging,
and, even when used on integer variables, an efficient library of infinite precision rational
numbers is needed.
For this reason, we decided to implement an alternative linear abstract domain. There

exists many relaxations of the Polyhedron abstract domain, that try to reduce the com-
putational cost of the Polyhedron abstract domain, while maintaining sufficient preci-
sion. Generically, they are called weakly relational numerical abstract domain. Among
others, the available alternatives include subpolyhedra [LL09], two variables per inequal-
ities [SK10], zonotopes [PG06, GLGP12], octagons [Min04, Min06a], zones [Min04] and
pentagons [LF08b].
In particular, the Octagon abstract domain is a nice trade-off between precision, ease

of implementation and performance: it accurately represents many of the linear variable
relationships appearing in a program, while using simple, well-known algorithms (based on
the famous Floyd-Warshall shortest-path algorithm), and still remaining reasonably fast (all
the operations have quadratic or cubic complexity on the number of variables). As shown
by Miné [Min04], it can naturally use floating-point numbers in its concretization, but also
in its implementation. It is very popular in the static analysis community, which explains
why it regularly gains from algorithmic improvements [CRK14, BHZ09, SPV15].
We implemented the Octagon abstract domain in Verasco. As reported by the designers

of Astrée [CCF+09], the quadratic or cubic complexity of most of its algorithms still make
it unusable as-is for a reasonable number of variables. A common solution is the use of
variable packing [Min04, Section 8.4.2], where the Octagon abstract domain is only used
on small packs of variables. By lack of time to experiment with highly tuned packing
heuristics, we decided not to use this strategy. Instead, we developed original algorithms
for the octagons abstract domain, where unrelated pairs of variables do not count towards
the algorithm cost: the total complexity of the cost of the analysis of two independent sets
of variables is very close to the sum of the costs of the analyses of the two sets of variables,
taken independently. We describe the theoretical setting behind the abstract domain of
octagons, together with these new algorithms in Section 8.2. The implementation details
are described in Section 8.3.
A linear abstract domain is unable to understand directly the expressions appearing in

a program, because the programming language typically contains non-linear constructs.
Thus, an intermediate step, where arbitrary expressions are transformed into (quasi-)linear
ones, is needed. In Section 8.1, we describe our linearization mechanism, which is greatly
inspired from that of Miné [Min04].

1Another representation of polyhedra is possible, the frame representation, where the domain uses a set of
vertices, whose polyhedron is the convex hull. However, the number of such needed vertices in practice
is also exponential in the number of variables.

146

8.1. Expression Linearization

8.1. Expression Linearization

The role of the linearization abstract domain is to transform most of the expressions pro-
duced by the front-end of Verasco into quasi-linear expressions. It interacts with the rest
of the hierarchy using two different mechanisms: first, it answers linearize_expr queries,
by returning a quasi-linear expression corresponding to the query (or the value None if the
conversion fails). Second, when receiving a Fact_msg message, coming from the front-end
of the analyzer entering an if statement, it tries to convert it into a quasi-linear constraint
of the form e = 0 for some quasi-linear expression e. Such a quasi-linear constraint is then
embedded in a Linear_zero_msg message, which can be analyzed by the octagon abstract
domain.
This architecture, where the linearization system is independent from the abstract do-

main, make us able to reuse the linearization system for other future linear abstract do-
mains. Another possibility, followed by the Verasco Polyhedral Library, is to use smarter
linearization techniques, that are required to be integrated into the abstract domain itself.

8.1.1. Quasi-Linear Expressions

A quasi-linear expression over variables (Xv)v∈V is of the following form:

[α−0 ;α
+
0] +

∑
v∈V

[α−v ;α
+
v]×Xv (8.2)

with ∀v ∈ V ∪{0}, α−v ∈ R∪{−∞} ∧ α+
v ∈ R∪{+∞} ∧ α−v ≤ α+

v . That is, it is an affine
expression with interval coefficients.
Quasi-linear expressions have to be interpreted in ideal real arithmetic: given the values

of the variables (xv)v∈V , the values of the quasi-linear expression are real numbers that can
be written as follows:

α0 +
∑
v∈V

αvxv with ∀v ∈ V ∪ {0}, αv ∈ [α−v ;α
+
v] (8.3)

In the Coq implementation, quasi-linear expressions are represented using a pair of an
interval (for the constant term), and a map from variable identifiers to intervals2 (for vari-
able coefficients). The intervals bounds are represented by floating-point numbers. The
semantics of quasi-linear expressions is defined in a very similar manner as in (8.3), except
that, because the variables can be either integer or floating-point and that (8.3) has to
be evaluated in R, we use two conversion operators (from Z to R, and from floating-point
numbers3 to R).

Intervalization of quasi-linear expressions

Given a quasi-linear expression and intervals ([x−v ;x+
v])v∈V for the values of the variables it

contains (i.e., ∀v ∈ V, xv ∈ [x−v ;x
+
v]), it is easy to compute an interval for the values of the

quasi-linear expression, by evaluating the expression using interval arithmetic. This gives
2In fact, each variable is also associated with a pre-computed interval for its value, in order to avoid

repeating get_itv queries on the same variable.
3In the Coq development, if one of the variables appearing in the expression has a non-finite floating-point

value (i.e., ±∞ or NaN), then the evaluation of the quasi-linear expression is stuck. This introduces a
subtle difference between an expression where a variable appears with the coefficient [0; 0] and the same
expression with the variable occurrence removed.

147

Chapter 8. Octagons and Expression Linearization

the following interval for the values of the quasi-linear expression:[
α−0 +

∑
v∈V

min{x−v α−v ; x+
v α
−
v ; x

−
v α

+
v ; x

+
v α

+} ;

α+
0 +

∑
v∈V

max{x−v α−v ; x+
v α
−
v ; x

−
v α

+
v ; x

+
v α

+}

] (8.4)

In Verasco, we do not compute exactly this interval: instead, we compute a sound approx-
imation by rounding the bounds towards the exterior of the interval.

8.1.2. Converting Expressions into Quasi-Linear Expressions

Converting numerical expressions into quasi-linear ones consists in finding a quasi-linear
expression whose set of values is a superset of the set of values4 of the given expression.
Because not all expressions appearing in the program are linear, this process is an approxi-
mation: in some cases, the returned expression will evaluate to more values than the given
expression. This process will fail when no suitable approximation is found or when it could
not be proved that the values of the given expression are finite.
We follow a naive but effective bottom-up strategy similar to the one described by

Miné [Min04]: our humble aim is to get a precise quasi-linear approximation for expressions
that are already close to linear in the source program, and, for now, we do not aim at imple-
menting more precise techniques such as the ones proposed by Maréchal and Périn [MP14],
which are able to build precise approximations for arbitrary multivariate polynomials.
Thus, we compute quasi-linear versions of expressions recursively, by considering expres-

sion nodes one after the other. We explain the algorithm as if we had arbitrary precision
real arithmetic operators. In our implementation, we only use floating-point bounds for
intervals: approximations of the real intervals are computed by rounding bounds towards
the exterior of the interval.

Expression leaves

Except for the ones that can evaluate to non-finite values5, whose linearization fail, the lin-
earization of expression leaves is always trivial. Indeed, intervals and constants are trans-
lated to an only constant term, and variables are translated to a quasi-linear expression
containing only the variable with coefficient [1; 1].

Linear operations

Addition, subtraction, negation and multiplication by a constant or an interval are inher-
ently quasi-linear operators, so they can be applied pointwisely to each term of the operands.
More precisely, consider the two quasi-linear expressions A and B defined by:

A = [α−0 ;α
+
0] +

∑
v∈V

[α−v ;α
+
v]×Xv (8.5)

B = [β−0 ;β+
0] +

∑
v∈V

[β−v ;β+
v]×Xv (8.6)

4Or, more precisely, the interpretation in R of these values.
5E.g., non-finite floating-point constants and variables whose interval contains non-finite values.

148

8.1. Expression Linearization

Their sum, their difference, the negation of the first, and multiplication by [u−;u+] of the
first are defined by, respectively:

A+B = [α−0 + β−0 ;α+
0 + β+

0] +
∑
v∈V

[α−v + β−v ;α+
v + β+

v]×Xv (8.7)

A−B = [α−0 − β+
0 ;α+

0 − β−0] +
∑
v∈V

[α−v − β+
v ;α+

v − β−v]×Xv (8.8)

−A = [−α+
0 ;−α

−
0] +

∑
v∈V

[−α+
v ;−α−v]×Xv (8.9)

[u−;u+]×A = [u−;u+]⊠ [α−0 ;α
+
0] +

∑
v∈V

[u−;u+]⊠ [α−v ;α
+
v]×Xv (8.10)

Where [u−;u+]⊠ [α−;α+] is a notation for the interval:[
min{u−α−; u+α−; u−α+; u+α+} ; max{u−α−; u+α−; u−α+; u+α+}

]
(8.11)

These operations are used directly for integer arithmetic. For floating-point arithmetic,
they are used in conjunction with the techniques for modeling rounding described in the
next section.

Handling rounding

All the operations involving rounding, such as floating-point arithmetic or conversions oper-
ators, are decomposed into two steps: the first step is the actual operation in real arithmetic,
while the second step is the rounding. In this section, we explain how standard rounding
modes can be precisely accounted when using quasi-linear expressions.
The rounding mode used when converting from floating-point numbers to integers is

round-to-zero6. This operation is not linear: it cannot be exactly represented as a linear
expression. However, it can be noted that, when the input x is non-negative, then its integer
rounding is in]x − 1;x], and, when x ≤ 0, then its integer rounding is in [x;x + 1[. For
the sake of simplicity, We do not distinguish these two cases and model integer rounding
towards zero by the addition of the interval [−1; 1].
Single or double precision floating-point rounding is more complex. In CompCert and

Verasco, we support only the most commonly used round-to-nearest mode. Let us consider
the case where we have to model the rounding of an arbitrary real number x, approximated
by the quasi-linear expression e, to a single or double precision floating-point number. We
have to distinguish three cases:

• If |x| is larger than or equal to a known threshold M , the rounding of x overflows,
and the result is ±∞, so no quasi-linear expression suits. The linearization should
fail. Thus, when approximating the rounding of a quasi-linear expression, we first
intervalize the input, and check that it cannot overflow.

• If |x| is strictly smaller than a known thresholdm, then x is in the denormal range: the
exponent of the result is fixed7 to its minimal value, and the absolute rounding error
is bounded in absolute value by the half of a denormal ulp. This kind of rounding can

6That is, if given a non-negative value, it returns the largest smaller integer, and, if it is non-positive, the
smallest larger integer.

7Except in the corner case where x is very close to m, in which case it rounds to m, which has a different
exponent. The bound on the absolute rounding error is still correct, though.

149

Chapter 8. Octagons and Expression Linearization

be modeled by the addition to e of a known interval [−η; η], for a very small known
real number η.

• Otherwise, x is in the normalized range. In this case, the relative rounding error is in
a known small interval. This kind of rounding can be modeled by the multiplication
of e with a known small interval [1− ε; 1 + ε] around 1.

For the sake of simplicity, we do not check whether our expression lies in the second or third
case: to model floating-point rounding, we return the join of [1−ε; 1+ε]×e and e+[−η; η].
We summarize in the table below the values of M , m, ε and η in single and double

precision. Note that not all of these values are exactly representable as double precision
floating-point numbers, so that we use sound approximations in practice.

M m η ε

Single precision 2128 − 2103 2−126 2−150
1

1 + 224

Double precision 21024 − 2970 2−1022 2−1075
1

1 + 253

Other operators

Integer or floating-point division and general multiplication are handled similarly: a get_itv
query is used to compute an interval for one of the operands, effectively transforming the
multiplication or division into a multiplication by an interval, optionally followed by a
rounding. These two operations are handled as above.
In the case of multiplication, we always choose the first operand to be intervalized. This

is a very naive choice: the reader may refer to Miné’s work for better heuristics [Min04].
No other operator is supported. Of course, a few other operators such as shifts could have

reasonable quasi-linear approximations, but we leave it as future work. When encountering
an unsupported operator, we do a get_itv query to get an interval for the expression and
return a quasi-linear expression consisting in the computed interval only.

8.1.3. Linearization Abstract Domain

The abstract environments of the linearization abstract domain do not contain any infor-
mation: there is only one abstract environment, of type unit. This makes all the abstract
operations trivial to implement. Miné [Min04] proposes several improvements of the lin-
earization process, that would make it possible to store in an abstract environment quasi-
linear expressions for variables, and inline them afterwards. We can imagine going into this
direction as future work, if the gain in precision is worth it.
As already sketched in the introduction of Section 8.1, the linearization abstract domain

interacts with others in two ways: it answers linearize_expr queries by converting an
expression passed as parameter into a quasi-linear approximation, and sends Linear_zero
messages when receiving Fact_msg messages.
More precisely, it detects Fact_msg messages that correspond to a numerical comparison

in the source code, linearizes both operands of the comparison, and computes the difference
of the two linearized forms. Then, depending on the kind of the comparison, it extrapolates
the bounds of the constant term of the computed expression, in order to build a quasi-
linear expression that evaluates to the real 0 whenever the analyzed condition is true. For

150

8.2. Theoretical Setting for Octagons

example, if the condition implies that the quasi-linear expression e evaluates to a non-
negative number, then the lower bound of the constant term is changed to −∞ so that the
expression evaluates to 0.

8.2. Theoretical Setting for Octagons

The abstract domain of octagons was introduced by Miné [Min04, Min06a]. Since then,
many improvements in algorithms and in the proofs of completeness and soundness have
been developed [CRK14, BHZ09, SPV15]. We give here a summary of the results in the
literature, together with an improvement of the already existing algorithms that we use in
Verasco.
This improvement makes us able to use a sparse representation of octagons, where we

do not need to store any data relating variables when this data can be recovered from the
available non-relational information. The idea of such a sparse representation has already
been studied recently [SPV15], but the authors of this work did not explain how the rela-
tional information need not be stored when it is implied by the non-relational one, and how
this has non-trivial implications for the join operator. In particular, their algorithm will
switch to the fully dense representation as soon as some relational information is known for
every variable [SPV15, Section 5.3].
By contrast, our method guarantees that the conjunct analysis of two independent sets

of variables uses only the sum of the resources of the two independent analyses, both in
terms of memory and computation time. This goal is achieved by removing the need for
the strengthening operation, that usually breaks sparsity. Thus, instead of maintaining the
invariant that the representation of octagons is fully saturated, we maintain the invariant
that it is weakly closed. We prove that no precision is lost by using weakly closed abstract
values, except for the join and widening operators, for which we give modified algorithms.
In this section, we study octagons in a simplified setting: we assume that all the com-

putations can be made in arbitrary precision, we omit data structure details, and the only
operations we support are the following:

• comparisons (see Section 8.2.3);

• the forget operation, that removes all the information known on a variable (see Sec-
tion 8.2.4);

• the operation, that computes the least upper bound of two abstract environments
(see Section 8.2.5);

• a weak version of the assume primitive, that makes us able to insert a constraint of
the form ±x ± y ≤ C for two non-necessarily different variables x and y and C ∈ R
(see Section 8.2.6);

• the widening operator (see Section 8.2.7).

These operators summarize all the algorithmic issues of octagons8 when considering envi-
ronments with real (or rational) values. The case of integer environments is discussed in
Section 8.2.8. The implementation details in Verasco will be addressed later in Section 8.3.

8One important primitive missing from that list is the assign primitive. The assignment x := e can be
emulated by assuming the equality between a fresh variable y and e, then forgeting x, assuming x = y
and finally forgeting y. In Verasco, assign is not actually implemented using this scheme, but with an
algorithm returning the same result.

151

Chapter 8. Octagons and Expression Linearization

8.2.1. Difference Bound Matrices

Let V+ be a finite set of variables. We call a regular environment a function from V+ to R.
The role of the Octagon abstract domain is to approximate sets of regular environments ρ.
To that end, the abstract domain of octagons stores a set of inequalities of the following
form:

±ρ(u)± ρ(v) ≤Muv u, v ∈ V+ (8.12)

This corresponds to giving bounds to sums and differences of values of ρ. Moreover, if we
use twice the same variable with the same sign, we see that, using such constraints, we can
express interval constraints over values of an environment9.
In order to handle all the different combinations of signs in these constraints in a unified

way, we introduce the set V± of signed variables. Signed variables are of two kinds: they
are either usual variables from V+, called positive variables in the context of signed vari-
ables, or their opposites form, negative variables. We equip V± with an involutive operator,
associating to each signed variable v its opposite v, such that v is positive if and only if v
is negative.
Regular environments are canonically extended to signed variables by taking ρ(u) =
−ρ(u). More generally, we define irregular environments as functions from V± to R, and
consider the set of regular environments as a subset of irregular environments. Regular
environments are exactly irregular environments ρ that satisfy the property ∀v, ρ(v) =
−ρ(v).
Using this new formalism, octagonal constrains of the form (8.12) can be seen as upper

bounds on differences of values of ρ, a regular environment:

ρ(u)− ρ(v) ≤ Nuv u, v ∈ V± (8.13)

This has two benefits: first, all the different kinds of constraints allowed by (8.12) get
factored out into one simpler form. Second, we can see these constraints as constraints
on irregular environments, and further constrain them as being regular: we see that the
study of the Octagon abstract domain will start by the study of a simpler abstract domain,
where only differences of variables are bounded. The set of constraints, called potential
constraints, of such abstract domain is well studied in the linear optimization literature,
because it corresponds to the well-known shortest path problem in a weighted directed
graph. The study of the Octagon abstract domain is an extension of the study of potential
constraints.
Such a set of constraints is represented as difference bound matrices: a difference bound

matrix, or DBM, is a matrix (Buv)(u,v)∈V2
±
of elements of R∪ {+∞}. The meaning of these

constraints is given by two concretization functions γpot and γoct, that associate to a DBM
the set of irregular or regular environments, respectively, satisfying all the constraints:

γpot(Buv) = {ρ : V± → R | ∀uv ∈ V±, ρ(u)− ρ(v) ≤ Buv} (8.14)
γoct(Buv) = {ρ ∈ γpot(Buv) | ∀u ∈ V±, ρ(u) = −ρ(u)} (8.15)

We denote as ♯≤ the natural order relation over DBMs, defined as follows:

A ♯≤ B ⇔ ∀uv ∈ V±, Auv ≤ Buv (8.16)

9For this reason, one may think that the Octagon abstract domain subsumes the interval abstract domain.
This is wrong, because the octagon abstract domain only support a subset of the arithmetic operators,
and it has a less precise handling of some others (with respect to floating-point rounding, for example).

152

8.2. Theoretical Setting for Octagons

The following easy lemma states that this order relation makes γpot and γoct increasing,
which makes ♯≤ a good candidate for a comparison operator of the Octagon abstract do-
main10:
Lemma 8.2.1. Let A and B be two DBMs such that A ♯≤ B. Then, we have:

γpot(A) ⊆ γpot(B) γoct(A) ⊆ γoct(B)

For any non-empty set S of irregular environments, there exists a minimal (in the sense
of ♯≤) DBM that approximates it. That is, there exists a minimal DBM α(S) such that
S ⊆ γpot(α(S)). This property follows immediately from the definition of α:

α(S)uv = sup
ρ∈S
{ρ(u)− ρ(v)} (8.17)

This function α is called the concretization function. We can easily see that α is an increasing
function11. Moreover, α does not only return best abstractions for γpot, but also for γoct:
if the set S contains only regular environments, we can see that α(S) is also the minimal
DBM such that S ⊆ γoct(α(S)).

8.2.2. Closures
The DBM data structure contains many redundancies: that is, many DBMs have the same
concretization. This is a problem, because the abstract environments that we manipulate
are therefore not necessarily the most precise ones, and this can lead to imprecision. Thus,
usually, an implementation of the Octagon abstract domain maintains the invariant that it
only manipulates “canonical” forms of DBMs, such that B = α(γoct(B)) (or, respectively,
B = α(γpot(B))). Such “canonical” DBMs are always the best possible representative over
all the DBMs with the same concretization.
We can see that, for DBMs with non-empty concretization, canonical DBMs always exist:

Lemma 8.2.2. Let B be a DBM with non-empty concretization. Then α(γpot(B)) (respec-
tively, α(γoct(B))) has the same concretization as B:

γpot(α(γpot(B))) = γpot(B) (respectively γoct(α(γoct(B))) = γoct(B))

It follows that α(γpot(B)) (respectively, α(γoct(B))) is a best abstraction. That is,

α(γpot(α(γpot(B)))) = α(γpot(B)) (respectively α(γoct(α(γoct(B)))) = α(γoct(B)))

Proof. This is a classical property of Galois connections. We detail the proof only for γpot:
as we have seen, α(γpot(B)) is the smallest DBM whose concretization is larger than that
of B, so γpot(B) ⊆ γpot(α(γpot(B))).
Because B is a candidate for such a DBM, we also have α(γpot(B)) ♯≤ B, by minimality.

It follows γpot(α(γpot(B))) ⊆ γpot(B).

An important fact is that we can characterize best abstractions using the values they
contain, and that we have algorithms to compute them. We will expose these character-
izations, together with these algorithms. Moreover, in the case of octagons, we will give
10As we will see in Section 8.2.3, this is not the order relation we use as a comparison operator in our

implementation of the Octagon abstract domain.
11Abstract interpretation or category theory experts will easily recognize here that ♯≤ defines a complete

lattice over DBMs extended with a bottom element, and that the pairs (γpot, α) and (γoct, α) form Galois
connections.

153

Chapter 8. Octagons and Expression Linearization

weaker conditions over DBMs, that do not ensure canonicity, but that can be computed
more quickly without losing any precision.
So, let us search for properties verified by canonical DBMs. We will not consider DBMs

with empty concretization, since they do not have a canonical representative, thus a special
element ⊥ is used as their canonical form. The following lemma states that canonicity for
γoct implies canonicity for γpot:

Lemma 8.2.3. Let B be a DBM such that γoct(B) ̸= ∅ and B = α(γoct(B)). Then
B = α(γpot(B)).

Proof. We have: γoct(B) ⊆ γpot(B), thus B = α(γoct(B)) ♯≤ α(γpot(B)). Moreover,
α(γpot(B)) ♯≤ B by minimality of α(γpot(B)).

As a result, we will first characterize canonicity for γpot and then refine this property for
γoct.

Best abstractions for γpot

A first step is to remark that canonical DBMs always have null diagonal values. Moreover,
they should always verify the triangular inequality. We call such DBMs closed DBMs:

Definition 8.2.1 (Closed DBM). A closed DBM is a DBM B verifying the two following
properties:

• ∀v ∈ V±, Bvv = 0

• ∀uvw ∈ V±, Buw ≤ Buv +Bvw

It appears that closed DBMs are exactly the best abstractions for γpot:

Theorem 8.2.4. Let B be a DBM. The two following properties are equivalent:

(i) B is closed

(ii) γpot(B) ̸= ∅ and B = α(γpot(B))

Proof. See, e.g., [Min04, Theorem 3.3.6].

An interesting consequence of this theorem is that closed DBMs always have non-empty
concretizations.
The typical algorithm used to detect the emptiness of the concretization of a DBM and to

compute closures is the Floyd-Warshall algorithm. Our implementation does not explicitly
compute closed DBMs, so we do not use this algorithm as-is. For this reason, we will not
detail it here. Instead, we refer the interested reader to previous works [Min04, BHZ09].

Best abstractions for γoct

We now refine the notion of closure to canonical forms for γoct. We know that if ρ is a
regular environment, then ρ(u)− ρ(v) = ρ(v)− ρ(u), so for any non-empty set S of regular
environments, we see that, α(S)uv = α(S)v u. Thus, canonical DBMs for γoct will verify the
coherence property:

Definition 8.2.2 (Coherent DBM). A DBM B is coherent when:

∀uv ∈ V±, Buv = Bv u

154

8.2. Theoretical Setting for Octagons

Moreover, we can see that the matrix elements of the form Buu (for u ∈ V±) impose
interval constraints on values of ρ. These interval constraints can be themselves combined
to entail constraints on any difference of values of ρ. For this reason, we guess that canonical
forms for γoct will verify the following strong closedness property:

Definition 8.2.3 (Strongly closed DBM). A DBM B is strongly closed when it is closed
and coherent and:

∀uv ∈ V±, Buv ≤
Buu +Bvv

2

This condition is necessary and sufficient: strong closedness characterizes canonical DBMs
for γoct.

Theorem 8.2.5. Let B be a DBM. The two following properties are equivalent:

(i) B is strongly closed

(ii) γoct(B) ̸= ∅ and B = α(γoct(B))

Proof. See, e.g., [Min04, Theorems 4.3.2 and 4.3.3].

The usual method [BHZ09] for computing strong closures consists in first ensuring that
the given matrix is coherent, then computing a closure (i.e., a canonical representative in
the sense of γpot(B)), and, finally, performing a so-called strengthening step12:

Definition 8.2.4 (Strengthening). Let B be a DBM. The strengthening of B, noted ♯S(B)
is defined by:

♯S(B)uv = min
{
Buu +Bvv

2
;Buv

}
The following easy lemma states the soundness of strengthening:

Lemma 8.2.6. Le B be a DBM. Then γoct(B) = γoct(
♯S(B))

Proof. ♯S(B) ♯≤ B, so γoct(
♯S(B)) ⊆ γoct(B).

Conversely, let ρ ∈ γoct(B). ρ is a regular environment. It verifies, for u, v ∈ V±:

ρ(u)− ρ(v) ≤ Buu +Bvv

2
ρ(u)− ρ(v) ≤ Buv

Thus: ρ(u)− ρ(v) ≤ ♯S(B)uv, and ρ ∈ γoct(
♯S(B)).

In order to prove that the strengthening operation does indeed compute the strong closure,
another ingredient is needed: we need to prove that it computes strong closures when given
coherent closed DBMs. Instead of proving this result directly, we introduce yet another
different notion of closure, that we will reuse later to explain our sparse algorithm:

Definition 8.2.5 (Weakly closed DBM). Let B be a DBM. We say that B is weakly closed
when any of the two following equivalent statements hold:

(i) B has a null diagonal and ♯S(B) is strongly closed;

(ii) B has a null diagonal, ♯S(B) is coherent, and:

∀uvw, ♯S(B)uw ≤ Buv +Bvw (8.18)
12This is actually an improvement of the method described initially by Miné [Min04].

155

Chapter 8. Octagons and Expression Linearization

Proof. We prove here that the two properties are equivalent. The proof of this result is
technical. As an additional guarantee of its correctness, we mechanically verified it in Coq.
As this is a precision result neither needed nor correct in the actual implementation because
of the use of floating-point numbers, the Coq proof is not present in the main development.
(i) ⇒ (ii) We first assume that B has a null diagonal and that ♯S(B) is strongly closed.

In this case, ♯S(B) is coherent, and:

∀uvw, ♯S(B)uw ≤ ♯S(B)uv +
♯S(B)vw ≤ Buv +Bvw

(ii) ⇒ (i) Conversely, we assume that B has a null diagonal, that ♯S(B) is coherent and
that:

∀uvw, ♯S(B)uw ≤ Buv +Bvw

We need to prove that ♯S(B) is strongly closed. It remains to prove the following three
properties:

∀uv, ♯S(B)uv ≤
♯S(B)uu + ♯S(B)vv

2
∀u, ♯S(B)uu = 0

∀uvw, ♯S(B)uw ≤ ♯S(B)uv +
♯S(B)vw

The first one is easy:

∀uv, ♯S(B)uv ≤
Buu +Bvv

2
=

♯S(B)uu + ♯S(B)vv
2

Concerning the remaining two, we first remark that:

∀u, ♯S(B)uu ≤ Buu +Buu

By reasoning on the two different possibles expressions for ♯S(B)uu, we deduce ∀u, 0 ≤
Buu +Buu. It follows that ∀u, ♯S(B)uu = 0.
Concerning the last property (the triangular inequality), let u, v, x ∈ V±. We distinguish

four cases:

• If ♯S(B)uv = Buv and ♯S(B)vw = Bvw, we use (8.18) directly.

• If ♯S(B)vv =
Buu +Bvv

2
and ♯S(B)vw =

Bvv +Bww

2
, we use the previously proved

property 0 ≤ Bvv +Bvv, and deduce:

♯S(B)uw ≤
Buu +Bww

2
≤ ♯S(B)uv +

♯S(B)vw

• The two other cases are symmetric. We assume, for example, that ♯S(B)uv = Buv ̸=
Buu +Bvv

2
and ♯S(B)vw =

Bvv +Bww

2
.

We have ♯S(B)uv = ♯S(B)v u by coherence, so ♯S(B)v u ̸=
Buu +Bvv

2
. So:

♯S(B)uv = ♯S(B)v u = Bv u = Buv

156

8.2. Theoretical Setting for Octagons

Now, the assumption (8.18) gives:

♯S(B)vu ≤ Bvv +Bv u

We have again two cases:
– Either Bvu ≤ Bvv +Bv u. Then:

Buu = ♯S(B)uu ≤ Buv +Bvu ≤ Buv +Bvv +Bv u

It follows:

Buu

2
≤ Buv +

Bvv

2
Buu +Bww

2
≤ Buv +

Bvv +Bww

2
♯S(B)uw ≤ ♯S(B)uv +

♯S(B)vw

– Either Bvv +Buu

2
≤ Bvv + Bv u. If Bvv = +∞, the inequality is immediate.

Otherwise, we have:
Buu

2
≤ Bvv

2
+Buv

We conclude as in the previous case.

We shall emphasize that, contrarily to the other notions of closedness, weak closedness
is not a notion of canonicity. In particular, there are many different weakly closed DBMs
with the same concretization.
Using the theorem-definition of weakly closed DBMs, we can prove the following theorem,

that states the correctness of the strong closure algorithm sketched above.

Theorem 8.2.7. Let B be a coherent DBM with γoct(B) ̸= ∅. Then:

α(γoct(B)) = ♯S(α(γpot(B)))

In particular, if B is coherent and closed, then ♯S(B) is strongly closed.

Proof. For the first statement, it suffices to prove that ♯S(α(γpot(B))) is strongly closed.
Indeed, in this case, we have:

♯S(α(γpot(B))) = α(γoct(
♯S(α(γpot(B))))) by Theorem 8.2.5

= α(γoct(α(γpot(B)))) by Lemma 8.2.6
= α({ρ regular | ρ ∈ γpot(α(γpot(B))))})
= α({ρ regular | ρ ∈ γpot(B)}) by Lemma 8.2.2
= α(γoct(B))

We now prove that ♯S(α(γpot(B))) is strongly closed. It suffices to prove that α(γpot(B))
is weakly closed. Being closed, it is clear that it has a null diagonal. Moreover, it is very
easy to show that it is coherent, because B is coherent. It remains to prove:

∀uvw, ♯S(α(γpot(B)))uw ≤ α(γpot(B))uv + α(γpot(B))vw

157

Chapter 8. Octagons and Expression Linearization

But α(γpot(B)) is closed. Thus, it verifies the triangular inequality, that in turn implies the
desired inequality.
At this stage, the second statement is a straightforward application of Theorem 8.2.4,

Lemma 8.2.6 and Theorem 8.2.5.

Usually, the implementations of the Octagon abstract domain maintain all used DBM
strongly closed, so that maximal information is known when entering an abstract operation.
However, this breaks the sparsity of the matrix. Indeed, the matrix elements of the form Buu

are non-relational interval bounds on the program variables: as we expect many variables
to be bounded, the strengthening step gives finite bounds for many DBM cells, and a
strengthened DBM loses most of the sparsity. In general, a DBM has a quadratic size in
the number of variables, and therefore this loss of sparsity is very costly.
We propose to avoid the strengthening step: instead of maintaining the invariant that all

the manipulated DBMs are strongly closed, we maintain the invariant that they are weakly
closed. Some abstract operators need to be adapted: in order to make sure we do not
lose precision, we will prove for each of those operators that it computes abstract values
with the same concretization as with the usual algorithms. Equivalently, we prove that the
strengthening of the abstract value computed by our operator is equal to the abstract value
computed by the usual operator on the strengthened parameters.
This notion of weak closedness has been introduced by Bagnara et al. [BHZ09, Appendix

A] as an intermediate notion for proving the correctness of the tight closure algorithm (see
Section 8.2.8). To the best of our knowledge, the use of the notion of weak closedness as an
invariant for manipulating sparse DBMs is an original result of our work.

8.2.3. Comparing Difference Bound Matrices

In order to use octagons in our analyzer, we need to define a comparison operator, taking
two DBMs and returning a Boolean. If this Boolean is true, then we have the guarantee
that the concretization of the first operand is included in that of the second operand.
A good candidate is, of course, ♯≤, the natural order relation between DBMs. Its sound-

ness is guaranteed by the monotonicity of γoct and γpot. In usual implementations of the
Octagon abstract domain, DBMs are kept strongly closed, so that this operator is actually
as precise as possible: it returns true if and only if the concretizations are included:

Theorem 8.2.8. Let A be a closed (respectively strongly closed) DBM, and B be any DBM.
The two following statements are equivalent:

(i) γpot(A) ⊆ γpot(B) (respectively γoct(A) ⊆ γoct(B))

(ii) A ♯≤ B

Proof. We give the proof only for γpot: the proof for γoct is analogous.
(ii)⇒ (i) cf. Lemma 8.2.1.
(i)⇒ (ii) We assume γpot(A) ⊆ γpot(B).
By monotonicity of α we have α(γpot(A)) ♯≤ α(γpot(B)), and, by minimality of α(γpot(B)),

we have α(γpot(B)) ♯≤ B. We conclude α(γpot(A))
♯≤ B.

Moreover, by Theorem 8.2.4, A = α(γpot(A)), so A ♯≤ B.

In the setting of weakly closed DBMs, this theorem does not hold, however. In order not
to lose precision while still using sparse DBMs, we need another comparison operator that
strengthens the bounds of the left operand when they do not entail the right operand:

158

8.2. Theoretical Setting for Octagons

Definition 8.2.6 (Weakly closed comparison). Let A be a weakly closed DBM and B be
any DBM. The weakly closed comparison of A and B, noted A ♯≤weak B is defined by:

A ♯≤weak B ≡
∧

u,v∈V±
Buv<+∞

Auv ≤ Buv ∨
Auu +Avv

2
≤ Buv

That is, for every finite bound on B, we first check whether it is directly entailed by the
corresponding bound in A, and then try to entail it using non-relational bounds. It exploits
sparsity, since only finite bounds in B are considered. The following theorem states that
it implements the comparison on concretizations, hence we can use it in a sparse context
without losing precision:

Theorem 8.2.9. Let A be a weakly closed DBM and B any DBM. The two following
statements are equivalent:

(i) γoct(A) ⊆ γoct(B)

(ii) A ♯≤weak B

Proof. Because A is weakly closed, ♯S(A) is strongly closed. Then:

A ♯≤weak B ≡
∧

u,v∈V±
Buv<+∞

Auv ≤ Buv ∨
Auu +Avv

2
≤ Buv

⇐⇒ ♯S(A) ♯≤ B

⇐⇒ γoct(
♯S(A)) ⊆ γoct(B) by Theorem 8.2.8

⇐⇒ γoct(A) ⊆ γoct(B) by Lemma 8.2.1

8.2.4. Forgetting Variables

An important operation provided by abstract domains is “forget a variable”. When given
a DBM and a variable v, it returns another DBM where all the information on v has
been forgotten. It exists in two versions: when considering regular environments and when
considering irregular environments. Before defining the abstract operations themselves, let
us define formally the concrete operations they approximate:

Definition 8.2.7 (Concrete forgetting). 1. Let x ∈ V± and S be a set of irregular envi-
ronments. We define:

Fx
pot(S) = {ρ+ [x⇒ r] | ρ ∈ S, r ∈ R}

2. Let x ∈ V+ and S be a set of regular environments. We define:

Fx
oct(S) = {ρ+ [x⇒ r;x⇒ −r] | ρ ∈ S, r ∈ R}

Their abstract counterpart are implemented by:

159

Chapter 8. Octagons and Expression Linearization

Definition 8.2.8 (Abstract forgetting). 1. Let x ∈ V± and B be a DBM. We define
♯Fx

pot(B) the DBM such that:

♯Fx
pot(B)uv =

0 if u = v = x

+∞ otherwise if u = x or v = x

Buv otherwise

2. Let x ∈ V+ and B be a DBM. We define:

♯Fx
oct(B) = ♯Fx

pot(
♯Fx

pot(B))

The following theorem guarantees the soundness of ♯Fx
pot and ♯Fx

oct. Moreover, it shows
that, when applied to closed and strongly closed DBMs, these abstract operators are exact
(i.e., they do not approximate the concrete operator, but return exactly the result of the
concrete operation; the only approximation resides in the input DBM), and preserve closure
and strong closure:

Theorem 8.2.10. Let B be a DBM and x ∈ V±. We have:

1. Fx
pot(γpot(B)) ⊆ γpot(

♯Fx
pot(B))

2. If B is closed, then Fx
pot(γpot(B)) = γpot(

♯Fx
pot(B)).

3. If B is closed, so is ♯Fx
pot(B).

Moreover, if x ∈ V+, we have:

4. Fx
oct(γoct(B)) ⊆ γoct(

♯Fx
oct(B))

5. If B is strongly closed, then Fx
oct(γoct(B)) = γoct(

♯Fx
oct(B)).

6. If B is strongly closed, so is ♯Fx
oct(B).

Proof. See, e.g., [Min04, Theorems 3.6.1 and 4.4.2].

To these properties, we add similar properties for weak closedness, that let us use it as-is
for weakly closed DBMs without loss of precision:

Theorem 8.2.11. Let B be a weakly closed DBM and x ∈ V+. We have:

1. ♯S(♯Fx
oct(B)) = ♯Fx

oct(
♯S(B))

2. Fx
oct(γoct(B)) = γoct(

♯Fx
oct(B))

3. ♯Fx
oct(B) is weakly closed

Proof. 1. Let u, v ∈ V±. We distinguish the following cases:
• If u, v /∈ {x, x}, we clearly have ♯S(♯Fx

oct(B))uv = ♯Fx
oct(

♯S(B))uv.
• If u ∈ {x, x} and v /∈ {x, x} (or symmetrically), or u = v ∈ {x, x}:

♯S(♯Fx
oct(B))uv = +∞ = ♯Fx

oct(
♯S(B))uv

• If u = v ∈ {x, x}:
♯S(♯Fx

oct(B))uv = 0 = ♯Fx
oct(

♯S(B))uv

160

8.2. Theoretical Setting for Octagons

2. We have:

Fx
oct(γoct(B)) = Fx

oct(γoct(
♯S(B))) by Lemma 8.2.6

= γoct(
♯Fx

oct(
♯S(B))) by Theorem 8.2.10 (B is weakly closed)

= γoct(
♯S(♯Fx

oct(B))) using 1.
= γoct(

♯Fx
oct(B)) by Lemma 8.2.6

3. ♯Fx
oct(

♯S(B)) is strongly closed by Theorem 8.2.10, thus so ♯S(♯Fx
oct(B)) is (using 1.).

Moreover, ♯Fx
oct(B) has a null diagonal. As a consequence, ♯Fx

oct(B) is weakly closed.

8.2.5. Join

The usual join operator on DBMs is defined by the usual least upper bound operator for ♯≤:

Definition 8.2.9 (DBM least upper bound). Let A and B be two DBMs. The least upper
bound ♯∪ on DBMs is defined by:

∀uv, (A ♯∪B)uv = max{Auv ; Buv}

The order relation ♯≤ and the operator ♯∪ clearly form an upper semi-lattice, thus usual
properties on Galois connections hold, providing nice results on the soundness and precision
of this operator:

Theorem 8.2.12. Let A and B be two DBMs. We have:

1. γpot(A) ∪ γpot(B) ⊆ γpot(A
♯∪B)

2. If A and B are closed, then A ♯∪B = α(γpot(A) ∪ γpot(B))

3. If A and B are closed, so is A ♯∪B

4. γoct(A) ∪ γoct(B) ⊆ γoct(A
♯∪B)

5. If A and B are strongly closed, then A ♯∪B = α(γoct(A) ∪ γoct(B))

6. If A and B are strongly closed, so is A ♯∪B

For weakly closed DBMs, even though the fourth point would guarantee the soundness
of ♯∪, this operator would lose precision when applied to non-strongly closed DBMs. As an
example, consider the weakly closed DBM A representing the two following inequalities on
positive variables x and y:

x+ x ≤ 1 y + y ≤ 0

The weakly closed DBM B, in turn, represents the two following inequalities:

x+ x ≤ 0 y + y ≤ 1

The inequality x+ y ≤ 1/2 is not present in A nor in B, even though it exists in ♯S(A) and
in ♯S(B). As a result, A ♯∪B contains the inequalities x+ x ≤ 1 and y + y ≤ 1, but would
not entail x+ y ≤ 1/2, which is entailed however by ♯S(A) ♯∪ ♯S(B).

161

Chapter 8. Octagons and Expression Linearization

The rationale behind this example is that a join can create some amount of relationality
that was not present in one or both operand. Our operator has to reflect this fact. Care
should be taken, however, not to break the sparsity of the operands by introducing spurious
finite values in the matrix. Our join for weakly closed DBMs is defined as follows:

Definition 8.2.10 (Weakly closed join for octagons). Let A and B be two weakly closed
DBMs. We take B

1/2
uv = Buu+Bvv

2 and A
1/2
uv = Auu+Avv

2 . The weakly closed join ♯∪weak is
defined in two steps:

1. We first define A ♯∪0weak B. Let u, v ∈ V±. We define:

(A ♯∪0weak B)uv =

Auv if Auv = Buv

Buv if Auv < Buv ≤ B
1/2
uv

max{Auv ; B
1/2
uv } if Auv < Buv ∧B

1/2
uv < Buv

(B ♯∪0weak A)uv if Auv > Buv

2. Let u, v ∈ V±. We define:

(A ♯∪weak B)uv =

min

{
(A ♯∪0weak B)uv

max
{
A

1/2
uv ; B

1/2
uv

}} if Auu < Buu ∧Avv > Bvv

or Auu > Buu ∧Avv < Bvv

(A ♯∪0weak B)uv otherwise

The first step can be computed by iterating over all the matrix elements that are different
in A and B. This first step thus preserves the sparsity, and consumes computing time only
for variables that are different in both branches. The second step can be computed efficiently
by first collecting in a list all the variables u for which Auu < Buu and, in another list, all
those for which Buu < Auu. By iterating over the two lists, we can efficiently modify only
the cells meeting the given condition. It should be noted that we break in the second step
only the sparsity that needs to be broken, as the modified cells correspond to the cases
where the join create new relational information (as in the example above).
The following theorem states that this modified join operator can be used on weakly

closed DBMs without loss of precision nor of soundness:

Theorem 8.2.13. Let A and B be two weakly closed DBMs. We have:

1. ♯S(A ♯∪weak B) = ♯S(A) ♯∪ ♯S(B)

2. γoct(A
♯∪weak B) = γoct(α(γoct(A) ∪ γoct(B)))

3. A ♯∪weak B is weakly closed

Proof. 1. The proof of the theorem is technical. For more confidence in its correctness,
we mechanically verified it in Coq. The theorems present in the Verasco main Coq
development do not imply this result, which is neither needed nor correct in the
actual implementation because of the use of floating-point numbers. Instead, a weaker
soundness result is proved in Verasco, and we formally proved this result in a separate
development.
We proceed by antisymmetry of ♯≤.

162

8.2. Theoretical Setting for Octagons

• We first prove ♯S(A) ♯∪ ♯S(B) ♯≤ ♯S(A ♯∪weak B). We have, by Theorem 8.2.12:

♯S(A) ♯∪ ♯S(B) = α(γoct(
♯S(A)) ∪ γoct(

♯S(B)))

Thus it suffices to prove, by minimality of α:

γoct(
♯S(A)) ∪ γoct(

♯S(B)) ⊆ γoct(
♯S(A ♯∪weak B))

By Lemma 8.2.6, this is equivalent to the following soundness statement:

γoct(A) ∪ γoct(B) ⊆ γoct(A
♯∪weak B)

So, let ρ ∈ γoct(A)∪γoct(B). We first prove that ρ ∈ γoct(A
♯∪0weakB). Let u, v ∈

V±. Without loss of generality, we can assume Auv ≤ Buv, so ρ(u)−ρ(v) ≤ Buv.
We distinguish several cases:

– If Auv = Buv, then ρ(u)− ρ(v) ≤ Buv = Auv = (A ♯∪0weak B)uv

– If Auv < Buv ≤ B
1/2
uv , then ρ(u)− ρ(v) ≤ Buv = (A ♯∪0weak B)uv

– If Auv < Buv ∧B
1/2
uv < Buv and ρ ∈ γoct(A), we have:

ρ(u)− ρ(v) ≤ Auv ≤ max{Auv ; B1/2
uv } = (A ♯∪0weak B)uv

– If Auv < Buv ∧B
1/2
uv < Buv and ρ ∈ γoct(B), we see that, since ρ is regular:

ρ(u)− ρ(v) ≤ B1/2
uv ≤ max{Auv ; B1/2

uv } = (A ♯∪0weak B)uv

We now continue by proving ρ ∈ γoct(A
♯∪weak B). Let u, v ∈ V±. Given that

ρ ∈ γoct(A
♯∪0weak B), it suffices to prove that ρ(u)− ρ(v) ≤ max

{
A

1/2
uv ; B

1/2
uv

}
.

Without loss of generality, we assume ρ ∈ γoct(A). We have ρ(u)−ρ(v) ≤ A
1/2
uv ≤

max
{
A

1/2
uv ; B

1/2
uv

}
.

• Now, we prove ♯S(A ♯∪weak B) ♯≤ S(A) ♯∪ ♯S(B). Let u, v ∈ V±. Without loss of
generality, we assume Auv ≤ Buv, and we distinguish several cases:

– If Buv ≤ B
1/2
uv , then:

♯S(A ♯∪weak B)uv ≤ (A ♯∪weak B)uv ≤ (A ♯∪0weak B)uv = Buv

Buv ≤ max{♯S(A)uv ; Buv} = (♯S(A) ♯∪ ♯S(B))uv

– If Auv ≤ A
1/2
uv and Buv > B

1/2
uv , then we remark that, independently of

whether Auv = Buv or not, (A ♯∪0weak B)uv = max{Auv ; B
1/2
uv }. Therefore:

(♯S(A ♯∪weak B))uv ≤ (A ♯∪0weak B)uv = max{Auv ; B1/2
uv }

= (♯S(A) ♯∪ ♯S(B))uv

– If Auv > A
1/2
uv and Buv > B

1/2
uv , we distinguish again two cases:

* Either max{A1/2
uv ; B

1/2
uv } = max{Auu;Buu}+max{Avv;Bvv}

2 , then, we remark
that, whatever the case, (A♯∪weakB)uu = max{Auu;Buu} (and similarly

163

Chapter 8. Octagons and Expression Linearization

for v). We deduce:

(♯S(A ♯∪weak B))uv ≤
(A ♯∪weak B)uu + (A ♯∪weak B)vv

2

= max{A1/2
uv ; B1/2

uv } = (♯S(A) ♯∪ ♯S(B))uv

* Otherwise, a bit of reasoning leads to Auu < Buu ∧Avv > Bvv or Auu >
Buu ∧Avv < Bvv. This is the case where:

(♯S(A ♯∪weak B))uv ≤ max{A1/2
uv ; B1/2

uv } = (♯S(A) ♯∪ ♯S(B))uv

2. We have :

γoct(A
♯∪weak B) = γoct(

♯S(A ♯∪weak B)) by Lemma 8.2.6
= γoct(

♯S(A) ♯∪ ♯S(B)) using 1.
= γoct(α(γoct(A) ∪ γoct(B))) by Theorem 8.2.12

3. Using 1. and Theorem 8.2.12, we have that ♯S(A♯∪weakB) = ♯S(A)♯∪♯S(B) is strongly
closed. Moreover, because A is weakly closed, we have ∀u, 0 ≤ Auu+Auu, and similarly
for B. From that, it is easy to derive that A♯∪weakB has a null diagonal, and therefore
it is weakly closed.

8.2.6. Assuming Constraints

An important operation for abstract domains is the assume primitive. In Verasco, it is
implemented using Fact_msg messages, that refine abstract environments using the fact
that a given expression evaluates to a given value. In this section, we only consider the
cases where this operation is exact, i.e., it does not lead to any approximation. These cases
amount to assuming that ρ(x)− ρ(y) ≤ C, for C ∈ R and x and y two variables. Again, to
simplify the notations, we give it in two versions: one adapted to γpot, and one adapted to
γoct.
Similarly to forgetting, we first give the concrete semantics of this operation, which is the

same for irregular and regular environments:

Definition 8.2.11 (Assuming constraints in the concrete). Let C ∈ R, x, y ∈ V± and S be
a set of irregular environments. We define:

Ax−y≤C(S) = {ρ ∈ S | ρ(x)− ρ(y) ≤ C}

It is easy to see that we can reflect exactly this operation in DBMs. Indeed, it suffices to
change the cell corresponding to the new constraint in the DBM, if the old value is larger
than the new one. However, this does not maintain any kind of closedness, whether it be
the normal closure, the strong closure or the weak closedness. As a result, it is necessary
to run a closure algorithm just after inserting the new constraint. Usually these algorithms
are costly (i.e., cubic complexity), and do not leverage the fact that the input matrix is
already almost closed. For this reason, incremental closure algorithms have been developed,
with quadratic worst case complexity. We give here a slightly different presentation of these
algorithms to the one originally given by Miné [Min04]:

164

8.2. Theoretical Setting for Octagons

Definition 8.2.12 (Assuming constraints in the abstract). Let C ∈ R, B be a DBM and
x, y ∈ V±.

1. We define ♯Ax−y≤C
pot (B) the DBM such that, for u, v ∈ V±:

♯Ax−y≤C
pot (B)uv = min{Buv ; Bux + C +Byv}

2. If x, y ∈ V+, we define ♯Ax−y≤C
weak (B) and ♯Ax−y≤C

oct (B) as:

♯Ax−y≤C
weak (B) = ♯Ay−x≤C

pot (♯Ax−y≤C
pot (B))

♯Ax−y≤C
oct (B) = ♯S(♯Ax−y≤C

weak (B))

The following theorem states their soundness and exactness in the context of closed and
strongly closed DBMs. It also provides an easy criterion for determining whether the new
constraint is contradictory:

Theorem 8.2.14. Let C ∈ R, B be a DBM and x, y ∈ V±. We have:

1. Ax−y≤C(γpot(B)) ⊆ γpot(
♯Ax−y≤C

pot (B))

2. If B has a null diagonal (or, a fortiori, is closed), then:

γpot(
♯Ax−y≤C

pot (B)) = Ax−y≤C(γpot(B))

3. If B is closed, the following statements are equivalent:
(i) Ax−y≤C(γpot(B)) ̸= ∅

(ii) 0 ≤ ♯Ax−y≤C
pot (B)xx

(iii) 0 ≤ C +Byx

(iv) ♯Ax−y≤C
pot (B) is closed.

Moreover, if x, y ∈ V+, we have:

4. Ax−y≤C(γoct(B)) ⊆ γoct(
♯Ax−y≤C

oct (B))

5. If B has a null diagonal (or, a fortiori, is strongly closed), then:

γoct(
♯Ax−y≤C

oct (B)) = Ax−y≤C(γoct(B))

6. If B is strongly closed, the following statements are equivalent:
(i) Ax−y≤C(γoct(B)) ̸= ∅

(ii) 0 ≤ ♯Ax−y≤C
oct (B)xx

(iii) 0 ≤ C +Byx

(iv) ♯Ax−y≤C
oct (B) is strongly closed.

Proof. We gave a slightly different presentation of the abstract transfer function as the one
present in the literature. To convince the reader this presentation is equivalent to others,
we give here the full proof of these results.

165

Chapter 8. Octagons and Expression Linearization

1. Let ρ ∈ Ax−y≤C(γpot(B)) and u, v ∈ V±. We have:

ρ(u)− ρ(v) = ρ(u)− ρ(x) + ρ(x)− ρ(y) + ρ(y)− ρ(v) ≤ Bux + C +Byv

ρ(u)− ρ(v) ≤ Buv

So, ρ(u)− ρ(v) ≤ ♯Ax−y≤C
pot (B)uv, and ρ ∈ γpot(

♯Ax−y≤C
pot (B)).

2. Using 1., it suffices to prove γpot(
♯Ax−y≤C

pot (B)) ⊆ Ax−y≤C(γpot(B)). To that end, let
ρ ∈ γpot(

♯Ax−y≤C
pot (B)). Since ♯Ax−y≤C

pot (B) ♯≤ B, we have ρ ∈ γpot(B). It remains to
prove ρ(x)− ρ(y) ≤ C.

We have Bxx = Byy = 0, so ρ(x)− ρ(y) ≤ ♯Ax−y≤C
pot (B)xy ≤ 0 + C + 0 = C.

3. (i)⇒ (ii) follows directly from 2. and the definitions.
(ii)⇒ (iii) We have:

0 ≤ ♯Ax−y≤C
pot (B)xx ≤ Bxx + C +Byx

With Bxx = 0 because B is closed.
(iii)⇒ (iv) We first prove that ♯Ax−y≤C

pot (B) has a null diagonal: let u ∈ V±. We have:

♯Ax−y≤C
pot (B)uu = min{Buu ; Bux + C +Byu}

Buu = 0 0 ≤ C +Byx ≤ Bux + C +Byu

Thus ♯Ax−y≤C
pot (B)uu = 0.

We now prove that ♯Ax−y≤C
pot (B) verifies the triangular equality. Let u, v, w ∈ V±, we

consider several cases:
• If ♯Ax−y≤C

pot (B)uv = Buv and ♯Ax−y≤C
pot (B)vw = Bvw, we have:

♯Ax−y≤C
pot (B)uw ≤ Buw ≤ Buv +Bvw = ♯Ax−y≤C

pot (B)uv +
♯Ax−y≤C

pot (B)vw

• If ♯Ax−y≤C
pot (B)uv = Buv and ♯Ax−y≤C

pot (B)vw = Bvx + C +Byw, we have:

♯Ax−y≤C
pot (B)uw ≤ Bux + C +Byw ≤ Buv +Bvx + C +Byw

= ♯Ax−y≤C
pot (B)uv +

♯Ax−y≤C
pot (B)vw

• The case ♯Ax−y≤C
pot (B)uv = Bux + C + Byv and ♯Ax−y≤C

pot (B)vw = Bvw is treated
similarly to the previous one.

• If ♯Ax−y≤C
pot (B)uv = Bux + C +Byv and ♯Ax−y≤C

pot (B)vw = Bvx + C +Byw, then:

♯Ax−y≤C
pot (B)uw ≤ Bux + C +Byw ≤ Bux + C +Byx + C +Byw

≤ Bux + C +Byv +Bvx + C +Byw

= ♯Ax−y≤C
pot (B)uv +

♯Ax−y≤C
pot (B)vw

(iv)⇒ (i) follows from Theorem 8.2.4 and 2.

166

8.2. Theoretical Setting for Octagons

4. Elements of ρ ∈ Ax−y≤C(γoct(B)) are all regular, so they verify ρ(y)− ρ(x) = ρ(x)−
ρ(y) ≤ C. We deduce:

Ax−y≤C(γoct(B)) ⊆ Ay−x≤C(Ax−y≤C(γpot(B)))

⊆ γpot(
♯Ax−y≤C

weak (B)) by 1.

Moreover, elements of Ax−y≤C(γoct(B)) are regular, therefore:

Ax−y≤C(γoct(B)) ⊆ γoct(
♯Ax−y≤C

weak (B))

We conclude by using Lemma 8.2.6.

5. By using 2. and Lemma 8.2.6, we get:

γoct(
♯Ax−y≤C

oct (B)) ⊆ Ay−x≤C(Ax−y≤C(γpot(B))) ⊆ Ax−y≤C(γpot(B))

All the elements of γoct(♯Ax−y≤C
oct (B)) are regular, so we also have:

γoct(
♯Ax−y≤C

oct (B)) ⊆ Ax−y≤C(γoct(B))

We conclude by using 4.

6. (i)⇒ (ii), (ii)⇒ (iii) and (iv)⇒ (i) are proved similarly as in 3. It remains to prove
(iii)⇒ (iv).
Thus, we assume 0 ≤ C +Byx and seek to prove that ♯Ax−y≤C

oct (B) is strongly closed.
By applying 3., we deduce that ♯Ax−y≤C

pot (B) is closed. Moreover, because B is strongly
closed:

Bxx + C +Byy ≥ C + 2Byx Bx y = Byx

Combining these identities and the definition of ♯Ax−y≤C
pot (B), we deduce 0 ≤ C +

♯Ax−y≤C
pot (B)x y, so we can apply 3. again: ♯Ax−y≤C

weak (B) is closed. We now prove that
it is also coherent. By definition, for u, v ∈ V±, we have:

♯Ax−y≤C
weak (B)uv = min

Buv ; Bux + C +Byv ; Buy + C +Bxv

Buy + C +Bxx + C +Byv

Bux + C +Byy + C +Bxv

Buy + C +Bxx + C +Byy + C +Bxv

But 0 ≤ 2C +Bxx +Byy, because B is strongly closed and 0 ≤ C +Byx. So, the last
parameter of the minimum is useless. The rest of the expression is symmetric, so the
coherence of ♯Ax−y≤C

weak (B) follows from that of B. Theorem 8.2.7 finishes the proof.

The theorem above implies in particular, that when applied to weakly closed DBMs,
♯Ax−y≤C

oct is sound and exact, since weakly closed DBMs have null diagonals. However,
because this operator uses ♯S, it breaks sparsity. The advantage of using weakly closed
DBMs is that, in the setting of weakly closed DBMs, ♯S is no longer needed: ♯Ax−y≤C

weak can
be used as-is without strengthening. The following theorem summarizes this result, and
justifies the use of this transfer function in the context of sparse DBMs without loss of
precision:

167

Chapter 8. Octagons and Expression Linearization

Theorem 8.2.15. Let C ∈ R, B be a weakly closed DBM and x, y ∈ V+. We have:

1. If 0 ≤ 2C +Byy +Bxx, then ♯S(♯Ax−y≤C
weak (B)) = ♯Ax−y≤C

oct (♯S(B))

2. γoct(
♯Ax−y≤C

weak (B)) = Ax−y≤C(γoct(B))

3. If B is weakly closed, the following statements are equivalent:
(i) Ax−y≤C(γoct(B)) ̸= ∅

(ii) 0 ≤ ♯Ax−y≤C
weak (B)xx

(iii) 0 ≤ C +Byx and 0 ≤ 2C +Byy +Bxx

(iv) ♯Ax−y≤C
weak (B) is weakly closed.

Proof. 1. Similarly to Definition 8.2.5 and Theorem 8.2.13, this technical result has been
formally verified in Coq outside of the main Verasco development.
Because ♯Ax−y≤C

oct is monotonic and ♯S(B) ♯≤ B, it follows that:

♯Ax−y≤C
oct (♯S(B)) ♯≤ ♯Ax−y≤C

oct (B) = ♯S(♯Ax−y≤C
weak (B))

It remains to prove ♯S(♯Ax−y≤C
weak (B)) ♯≤ ♯Ax−y≤C

oct (♯S(B)).

We first reduce to the case where B is coherent: let B̃uv = max{Buv ; Bv u}. B̃
is clearly coherent. We prove that B̃ verifies the same hypotheses than B (i.e., it is
weakly closed and 0 ≤ 2C + B̃yy + B̃xx), and that if the inequality holds fold B̃, then
it holds for B.
We prove here that B̃ is weakly closed. By using the distributivity of min over max,
we have that ∀u, v ∈ V±, ♯S(B̃)uv = max{♯S(B)uv ; ♯S(B)v u}. Because ♯S(B)uv is
coherent, we get ♯S(B̃) = ♯S(B). So, ♯S(B̃) is strongly closed. Moreover, it is clear
that B̃ has a null diagonal, so it is weakly closed.
We have Bxx = B̃xx and Byy = B̃yy, so 0 ≤ 2C + B̃yy + B̃xx.

We assume ♯S(♯Ax−y≤C
weak (B̃)) ♯≤ ♯Ax−y≤C

oct (♯S(B̃)), and seek to prove the same inequality
on B. We get:

♯S(♯Ax−y≤C
weak (B)) ♯≤ ♯S(♯Ax−y≤C

weak (B̃)) ♯≤ ♯Ax−y≤C
oct (♯S(B̃)) = ♯Ax−y≤C

oct (♯S(B))

So, the same equality on B holds.
Thus, we can assume that B is coherent.
We now prove that it suffices to prove:

♯S(♯Ax−y≤C
weak (B)) ♯≤ ♯Ax−y≤C

weak (♯S(B))

to show the desired equality ♯S(♯Ax−y≤C
weak (B)) ♯≤ ♯Ax−y≤C

oct (♯S(B)) holds. We remark
that ♯S is an idempotent operator, so:

♯S(♯Ax−y≤C
weak (B)) = ♯S(♯S(♯Ax−y≤C

weak (B))) by idempotence of ♯S
♯≤ ♯S(♯Ax−y≤C

weak (♯S(B))) by using our hypothesis
= ♯Ax−y≤C

oct (♯S(B))

168

8.2. Theoretical Setting for Octagons

Thus, we now seek to prove ♯S(♯Ax−y≤C
weak (B)) ♯≤ ♯Ax−y≤C

weak (♯S(B)). Let u, v ∈ V±. We
have, by unfolding the definitions and doing some arithmetic simplifications:

♯Ax−y≤C
weak (♯S(B))uv = min

♯S(B)uv

♯S(B)ux + C + ♯S(B)yv ; ♯S(B)uy + C + ♯S(B)xv
♯S(B)uy + C +Bxx + C + ♯S(B)yv
♯S(B)ux + C +Byy + C + ♯S(B)xv

♯S(B)uy + C +Bxx + C +Byy + C + ♯S(B)xv

By using 0 ≤ 2C +Byy +Bxx, we can further simplify this expression into:

♯Ax−y≤C
weak (♯S(B))uv = min

Buv ; Buu+Bvv

2
Bux + C +Byv ; Buy + C +Bxv

2C +Buy +Bxx +Byv ; 2C +Bux +Byy +Bxv
Buu+Bxx

2 + C +Byv ; Bux + C +
Byy+Bvv

2
Buu+Byy

2 + C +Bxv ; Buy + C + Bxx+Bvv

2

We take each of the parameters of the minimum and prove it is larger or equal to
♯S(♯Ax−y≤C

weak (B))uv. The only non-trivial ones are the four last ones. As they are
symmetric, we only consider the following (recall that B is coherent):

Buu +Bxx

2
+ C +Byv =

Buu

2
+

Bv y + C +Bxx + C +Byv

2

≥
♯Ax−y≤C

weak (B)uu
2

+
♯Ax−y≤C

weak (B)vv
2

≥ ♯S(♯Ax−y≤C
weak (B))uv

2. B is weakly closed, so it has a null diagonal. We conclude by using statement 5. of
Theorem 8.2.14 and Lemma 8.2.6.

3. (i)⇒ (ii), (ii)⇒ (iii) and (iv)⇒ (i) are proved similarly to Theorem 8.2.14.
We prove (iii) ⇒ (iv). We assume 0 ≤ C + Byx and 0 ≤ 2C + Byy + Bxx and prove
♯Ax−y≤C

weak (B) is weakly closed.
We have 0 ≤ C + ♯S(B)yx, and ♯S(B) is strongly closed, because B is weakly closed.
So, by Theorem 8.2.14, ♯Ax−y≤C

oct (♯S(B)) is strongly closed. By 1., ♯S(♯Ax−y≤C
weak (B)) is

strongly closed, and therefore, ♯Ax−y≤C
weak (B) is weakly closed.

8.2.7. Widening
Widening on octagons has several variants in the literature. In our work, we use its simplest
form, where bounds are extrapolated to +∞. Miné [Min04] describes a strategy of widening
by thresholds for octagons. In this simple form, widening for DBMs in closed or strongly
closed form is given by the following operator:

Definition 8.2.13. Let A and B be two DBMs. We define A ▽ B as the DBM such that,
for u, v ∈ V±:

(A ▽B)uv =

{
Auv if Auv ≤ Buv

+∞ otherwise

169

Chapter 8. Octagons and Expression Linearization

It is straightforward to check that this operator verifies the usual properties of widen-
ings: (3.7), (3.8), (3.9) and even (3.10). It is worth noting that, even if A and B are closed
or strongly closed DBMs, there is no reason for A▽B to be closed or strongly closed. There-
fore, state-of-the-art implementations of the Octagon abstract domain might run a closure
algorithm just after each widening. There is a catch, however: closure after a widening
can break the termination of fixpoint iteration [Min04, Section 3.7.2]. Our solution to this
particular problem lies in the use of a different widening and a different fixpoint iteration
scheme (see Section 3.1.2).
In the weakly closed setting that we use for representing sparse DBMs, the use of ▽

would not compute abstract environments equivalent to those computed with the strongly
closed setting. We aim at designing algorithms that can be used transparently instead of
the regular ones. Thus, we need an adaptation of the widening for weakly closed DBMs.
The adapted widening uses the possibility offered by our widening formalism of returning

two values for the widening, that we have exposed in Section 3.1.2. Recall that in our
formalism, the widening returns two abstract environments: the first, the iteration abstract
state, is used as the first argument of the next widening of the iteration, and the second is
used to analyze e.g., the body of the considered loop. We have explained that there is no
requirement that these two values have the same type.
In particular, for octagons in the weakly closed setting, we store additional information in

the iteration abstract state. Namely, additionally to the current DBM stored in its sparse
form, we store a matrix of Booleans indicating, for each cell of the DBM containing +∞,
whether it has already been extrapolated or not. This pair of matrices constitute an efficient
representation of the DBM that would have been the iteration abstract state if we had used
the usual, dense setting of strongly closed DBMs. It always verifies a specific invariant,
stating that the DBM is maximally sparse and that the Boolean is never true when the
corresponding cell in the DBM is finite.

Definition 8.2.14. 1. In the setting of sparse DBMs, a iteration abstract state is a pair
(B,W) of a DBM B and a matrix of Booleans W such that, for all u, v ∈ V± with
Buv < +∞, we have:

• Wuv = false

• If u ̸= v, then Buv < Buu+Bvv

2

2. We associate to an iteration abstract state (B,W) of the sparse setting a DBM
WS(B,W), corresponding to the dense setting, defined such that, for u, v ∈ V±:

WS(B,W)uv =

{
+∞ if Wuv = true
♯S(B)uv otherwise

We can now define our adaptation of the widening: the definition contains two operators:
the actual widening operator, returning a pair of an iteration abstract state and a DBM,
and init_iter, the operator that returns the initial iteration abstract state from the initial
DBM of the iteration. The widening operator is defined in four steps, similarly to the join
operator that used two steps.

Definition 8.2.15 (Sparse widening). Let B be a DBM, and (A,W) an iteration abstract
state. We state A

1/2
uv = Auu+Avv

2 and B
1/2
uv = Buu+Bvv

2 .

170

8.2. Theoretical Setting for Octagons

1. We define init_iter(B) the iteration abstract state such that, for u, v ∈ V±:

fst(init_iter(B))uv =

{
+∞ if Buu+Bvv

2 ≤ Buv and u ̸= v

Buv

snd(init_iter(B))uv = false

2. We define (A,W) ▽0
weak B, such that, for u, v ∈ V±:

((A,W) ▽0
weak B)uv =

Auv if ♯S(B)uv ≤ Auv < +∞

A
1/2
uv if Buv < +∞ ∧ Auv = +∞ ∧ Wuv = false

∧ Buv ≤ A
1/2
uv ∧ (Auu < Buu ∨Avv < Bvv)

+∞ otherwise

3. We define (A,W) ▽W
weak B, such that, for u, v ∈ V±:

((A,W) ▽W
weak B)uv =

{
true if Auv < +∞ ∧ ((A,W) ▽0

weak B)uv = +∞
Wuv otherwise

4. We define (A,W) ▽1
weak B, such that, for u, v ∈ V±:

((A,W) ▽1
weak B)uv =

A

1/2
uv if

(
∨ Auu < Buu ∧Avv > Bvv

Auu > Buu ∧Avv < Bvv

)
Wuv = false

((A,W) ▽0
weak B)uv = +∞

B1/2 ≤ A1/2 < +∞
((A,W) ▽0

weak B)uv otherwise

5. We define (A,W) ▽weak B by:

fst((A,W) ▽weak B) = ((A,W) ▽1
weak B, (A,W) ▽W

weak B)

snd((A,W) ▽weak B) = (A,W) ▽1
weak B

The following theorem states that this definition of the widening maintains the invariant of
the iteration abstract state and computes the same thing as the usual widening operator ▽:

Theorem 8.2.16. Let B be a DBM, and (A,W) an iteration abstract state.

1. init_iter(B) is an iteration abstract state.

2. WS(init_iter(B))uv = B

3. (A,W) ▽weak B is an iteration abstract state.

4. WS(fst((A,W) ▽weak B)) = WS(A,W) ▽ ♯S(B)

5. ♯S(snd((A,W) ▽weak B)) = WS(A,W) ▽ ♯S(B)

171

Chapter 8. Octagons and Expression Linearization

We do not detail the proof of this very technical theorem. As an argument of its correct-
ness, we have proved it correct using the Coq proof assistant. If the reader wanted more
detail, she would have to go through many cases: most of them are trivial, and the proofs
of the others are inspired by the proof of Theorem 8.2.13.
It should be noted, however, that even if B is weakly closed, there is no guarantee on

whether snd((A,W) ▽weak B) is weakly closed. Therefore, a closure algorithm is run on
this DBM before any use (but not on fst((A,W) ▽weak B), because that could break the
termination of the fixpoint iteration, as explained above).

8.2.8. A Note on Tightening
Miné [Min04] and Bagnara et al. [BHZ09] study the case of the Octagon abstract domain
when the considered environments take only values in Z: in contrast with the previous
sections, in this case, the strongly closed DBMs are not all canonical, so that modified
algorithms need to be used. Even though we do not use these algorithms in Verasco, we
explain here that the use of the weakly closed setting is not problematic when considering
the integer case.
To this end, we define a different concretization function, γZ

oct, that concretizes only to
integer environments:

Definition 8.2.16 (Integer concretization of octagons). Let B be a DBM. We define:

γZ
oct(B) = {ρ ∈ γoct(B) | ∀u ∈ V+, ρ(u) ∈ Z}

If we consider only integer environments, best abstractions have a slightly stronger char-
acterization. In particular, all the bounds should be in Z, and bounds on differences of the
form ρ(u) − ρ(u) are necessarily even. Such DBMs are said to be tightly closed. We also
define the notion of weakly tightly closed DBMs, which is the analog of weakly closed DBMs
for the integer case.

Definition 8.2.17 (Tight closure). Let B be a DBM. B is tightly closed (respectively weakly
tightly closed) when:

• B is strongly closed (respectively weakly closed)

• ∀uv ∈ V±, Buv ∈ Z

• ∀u ∈ V±, Buu

2 ∈ Z

The following theorem states that tightly closed DBMs are exactly best abstractions for
integer environments:

Theorem 8.2.17. Let B be a DBM. The two following properties are equivalent:

(i) B is tightly closed

(ii) γZ
oct(B) ̸= ∅ and B = α(γZ

oct(B))

Proof. (i)⇒ (ii) is an easy consequence of [Min04, Theorem 4.3.7].
(ii)⇒ (i) We have:

B = α(γZ
oct(B)) ♯≤ α(γoct(B)) ♯≤ B

So B = α(γoct(B)), and B is strongly closed (Theorem 8.2.5). The other two properties of
tight closure are obvious.

172

8.2. Theoretical Setting for Octagons

Bagnara et al. [BHZ09, Section 6] give efficient algorithms for computing the tight closure
of a DBM. Essentially, it consists in applying a tightening operation before strengthening.
The tightening operation is defined by:

Definition 8.2.18 (Tightening). Let B be a DBM with elements in Z. We define ♯T (B)
to be the DBM with elements in Z such that, for u, v ∈ V±:

♯T (B)uv =

{
Buv − 1 if u = v and Buv is odd
Buv otherwise

The following theorem gives the essential property of the tightening operation:

Theorem 8.2.18. Let B be a weakly closed DBM with elements in Z. We suppose that
∀u ∈ V±, 0 ≤ ♯T (B)uu + ♯T (B)uu. Then ♯T (B) is weakly tightly closed.

Proof. Because B has elements in Z, it is easy to see that:

∀uv ∈ V±, ♯T (B)uv ∈ Z

∀u ∈ V±,
♯T (B)uu

2
∈ Z

So, it remains to prove that ♯T (B) is weakly closed. The facts that it is coherent and that it
has a null diagonal follows easily from the corresponding properties of B. Thus, it remains
to prove, for u, v, w ∈ V±:

♯S(♯T (B))uw ≤ ♯T (B)uv +
♯T (B)vw

We distinguish several cases:

• If u ̸= v and v ̸= w, then we have:

♯S(♯T (B))uw ≤ ♯S(B)uw ≤ Buv +Bvw = ♯T (B)uv +
♯T (B)vw

• If u = v = w, then we have:

♯S(♯T (B))uu ≤ ♯S(B)uu = 0 ≤ ♯T (B)uu + ♯T (B)uu

• If u = v ̸= w, then we have, because ♯S(B) is strongly closed:

Bww = ♯S(B)ww ≤ ♯S(B)wu + ♯S(B)uu + ♯S(B)uw

= ♯S(B)uu + 2♯S(B)uw ≤ Buu + 2Buw

Therefore, using the fact that u ̸= w:

♯T (B)ww ≤ 1 + ♯T (B)uu + 2♯T (B)uw

♯S(♯T (B))uw ≤
♯T (B)uu + ♯T (B)ww

2
≤ 1

2
+ ♯T (B)uu + ♯T (B)uw

But both ♯S(♯T (B))uw and ♯T (B)uu + ♯T (B)uw are integers, so it follows:

♯S(♯T (B))uw ≤ ♯T (B)uu + ♯T (B)uw

173

Chapter 8. Octagons and Expression Linearization

• If u ̸= v = w, we use a similar argument as in the previous case.

This theorem has two consequences. First, as already explained by Bagnara et al. [BHZ09,
Section 6], this theorem gives an efficient algorithm to compute tight closure: to this end,
one would compute the closure of the input matrix, then tighten it and finally strengthen
it. If the DBM before strengthening verifies ∀u ∈ V±, 0 ≤ Buu +Buu, then Theorem 8.2.18
ensures that the result of the algorithm is tightly closed. Otherwise, the initial DBM
is not consistent. The second consequence is that our sparse algorithms need only small
adjustments when used with integer environments: instead of maintaining the DBMs weakly
closed, we just have to make them weakly tightly closed by slightly adapting the abstract
operators. In practice, among all the operators we have described, only ♯A needs to be
adapted.
Note, however, that tightening does not address the case of mixed environments, where

some variables are known to have integer values, and some others can have arbitrary real val-
ues. To the best of our knowledge, there is no known efficient closure algorithm supporting
this use case, even in the dense setting.
In Verasco, environments contain both integers and floating-point values. Therefore, we

are in a situation which is very close to the real-integer mixed environment case, so that we
see integer variables as if they were real variables, and we do not use tightening.

8.3. Implementation of Octagons in Verasco
In this section, we give the design ideas we used for implementing the Octagon abstract
domain in Verasco. We first explain the data structure we used, and then give more detail
on the implementation of the different abstract domain primitives.

8.3.1. Data Structures for Octagons in Verasco

From the type var of variable identifiers, we build the type ovar of signed variable identifiers:

Inductive ovar :=
| ovPlus (v:var)
| ovMinus (v:var).

Difference bound matrices (DBMs) are represented using finite double precision floating-
point numbers. Therefore, we first define a type for finite floating-point numbers, using a
subset type:

Definition fin_float := {f:float | is_finite f = true}.

Then, we can define the type of DBMs, which are abstract environments for the Octagon
abstract domain:

Definition t := To.t (To.t fin_float).

where To.t is a type for maps using keys of type ovar. That is, DBMs are maps indexed
by signed variables and containing maps indexed by signed variables and containing finite
floating-point numbers.
Another way of seeing this type for abstract environments is by “uncurrying” it. That is,

instead of seeing it as a map containing maps, indexed by signed variables, we see it as a
map indexed by a pair of signed variables:

174

8.3. Implementation of Octagons in Verasco

Definition t := Too.t fin_float.

Where Too.t is a type of maps using pairs of signed variables as keys. The definition of
Too.t makes these two definitions convertible. We find very convenient to see the type t
either as nested maps using signed variables as keys, or as a map using pairs of variables as
keys.
We should note that by using floating-point bounds, our data structure for DBMs can-

not represent bounds with infinite precision. Therefore, in the algorithms of the Octagon
abstract domain, we use the safe rounding towards +∞ for all the newly computed bounds.
As already discussed by Miné [Min04, Section 7.5.3] and Bagnara et al. [BHZ09, Section
7], this method preserves the soundness of the domain of octagons, but breaks most of the
results about the precision. In particular, nearly none of the abstract transfer functions
preserve the closure property. For this reason, we did not formally prove any precision re-
sult of the Octagon abstract domain13. However, we think that the loss of precision is small
in practice, given the large accuracy provided by the IEEE double precision floating-point
type. As an example, this type is able to represent exactly every integer between −253 and
253.
These maps are sparse: the absence of a binding corresponds to an infinite bound, and

we do a best effort storing as few bounds as possible, while maintaining the invariant that
the map is weakly closed (modulo rounding errors). Moreover, when computing an abstract
transfer function, we do a best effort trying to exploit and maintain sharing of the different
abstract environments. To that end, we use the techniques described in Section 9.1.
Miné [Min04, Section 4.5.1] notices that, when it is strongly closed, nearly half the in-

formation contained in a DBM is redundant, because of the coherence property (Defini-
tion 8.2.2). Therefore, Miné uses an efficient representation for DBMs where only the lower
left part is stored in memory. This optimization could be extended to weakly closed DBMs,
by further assuming that DBMs are coherent. However, we do not use this optimization,
which significantly complicates accesses to DBMs, and, in particular, prevents using effi-
ciently the combine function that iterates simultaneously on two maps.
We do not implement tightening, the specific closure operator for integer environments.

We have discussed this choice in Section 8.2.8: this is mainly motivated by the fact that,
to the best of our knowledge, there is no efficient tightening algorithm when the considered
environments contain integers and reals.

Concretization

In order to define the concretization function for octagons, we first describe how an envi-
ronment of ideal values (that is, of type var -> ideal_num) can be seen as an environment
of real values over signed variables. This is done in two steps: first, we project the domain
to R with the rρ function, using automatically inserted coercions that convert floating-point
and integer values to real values, and second we extend the codomain to ovar:

Definition rρ (ρ : var -> ideal_num) (x:var) : option R :=
match ρ x with
| INz z => Some (z:R)
| INf f => if is_finite f then Some (f:R) else None
end

Definition oρ (ρ : var -> ideal_num) (x:ovar) : option R :=
match x with

13The proofs indicated in Section 8.2 as being formally verified were done in a simplified setting, assuming
infinite precision.

175

Chapter 8. Octagons and Expression Linearization

| ovPlus x => rρ ρ x
| ovMinus x => option_map Ropp (rρ ρ x)
end.

It is important to understand that not all ideal values can be projected to the set of real
numbers. Namely, non-finite floating-point numbers do not have a real interpretation. For
that reason, ideal environments are translated to environments valued in option R instead
of R. We see here a difficulty that was unforeseen in Section 8.2: because some variables may
be associated with no real concrete value, we have to check for finiteness of floating-point
variables each time it can appear in the octagon. In particular, it is unsound to set to 0 the
whole diagonal of a DBM.
Given Too.get, the function reading a binding in a map of type Too.t, the concretization

function for octagons is defined by:
Instance ogamma: gamma_op t (var -> ideal_num) :=

fun ab ρ =>
∀ x y b, Too.get (x, y) ab = Some b ->
∃ xv yv, oρ ρ x = Some xv /\ oρ ρ y = Some yv /\ (xv-yv <= b).

That is, if the DBM contains a bound b for a pair of variables x and y, then the environment
does contain finite values for these variables, and their difference is smaller than b.

8.3.2. Implementing Abstract Operations
Given the data structure and concretization function we defined in Section 8.3.1, we are
now ready to give more detail on the implementation of the abstract operations over oc-
tagons. We first concentrate on lattice operations and widening, and then give details about
assignment, treatment of messages and forgetting of variables.

Lattice operations and widening

The implementation of the comparison, join and widening operators is very similar to that
described in Section 8.2. We should note, however, that they are all implemented using
the shcombine and shcombine_diff primitives exploiting the sharing in data structures, de-
scribed in Section 9.1. Therefore, no computation time overhead is incurred when comparing
or joining abstract environments sharing most of their contents.
Join is implemented using two steps, as described in Section 8.2.5: the first one iterates

over the two maps simultaneously using shcombine, while the second one iterates over the
list of differences in elements of the form Auu.
The implementation of widening follows the same two steps, with an additional closure

computation at the end of widening, made necessary by the breaking of the weak closedness
invariant by the widening property. This closure computation is done by an implementation
of the Floyd-Warshall algorithm, improved to leverage the fact that bounds that are left
untouched by the widening need not be updated.

Assignment and processing messages

Before evaluating an assignment or processing a message, a linearization of the expression
takes places. For an assignment, this is the Octagon abstract domain that queries the
linearization abstract domain described in Section 8.1. For messages, the linearization
automatically translates the message into the equality of a quasi-linear expression and 0.
Therefore, the only messages handled by the Octagon abstract domain are Linear_zero_msg
messages.

176

8.3. Implementation of Octagons in Verasco

The algorithms we use are inspired from those of Miné [Min04, Definition 4.4.7]. That is,
we do not try to be too smart14 inferring octagonal constraints from quasi-linear expressions,
but we infer the simplest ones.
After the linearization step, assignments and processing of messages share a common

intermediate data structure. Namely, they use the notion of constraint row. A constraint
row is a set of difference constraints between a concrete value and the value of variables in
an environment: as an example, a DBM can be seen as a collection of constraint rows, one
for each variable. Constraint rows and their interpretation are defined as follows:
Definition constraint_row := To.t fin_float.

Definition constraints_row_valid (row:constraint_row) (ρ:var->ideal_num) : P R :=
fun (v:R) =>
∀ x b, To.get x row = Some b ->
∃ xv, oρ ρ x = Some xv /\ (v-xv <= b).

That is, a constraint row is a map from signed variables to finite floating-point numbers.
The interpretation of a constraint row, given by the constraint_row_valid predicate, is the
set of real numbers satisfying all the difference constraints in a given ideal environment.
When analyzing a Linear_zero_msg message giving a constraint of the form e = 0 for e

a quasi-linear expression, the Octagon abstract domain first computes an upper bound for
all the expressions of the form e± x± y for x and y appearing in e: these bounds serve as
upper bounds in the new octagonal constraints of the form ±x± y ≤ _. Also, it computes
upper bounds for all the expressions of the form e± x and derives octagonal constraints of
the form ±x± x ≤ _. Among these new octagonal constraints, the ones sharing the same
first variable are then bundled in constraints rows. Finally, we use a modified version of the
algorithm described in Definition 8.2.12 that is able to insert in the DBM all the constraints
contained in a constraint row simultaneously in quadratic time.
To model an assignment x := e of an expression e to a variable x, we use an algorithm

that simulates the following procedure: it assumes x′ = e for a fresh variable x′, then it
projects out variable x and finally it renames variable x′ into x. The actual algorithm is
slightly more complex, due to the impossibility to generate fresh variables.

Forgetting a variable

The last abstract operation we consider here is the forget transfer function: its imple-
mentation is simple, it consists in removing the entries of the DBM corresponding to the
variable. This is similar to what is described in Definition 8.2.8, except that we do not reset
the corresponding diagonal elements to 0, because of the possibility of non-finite values..

8.3.3. Cooperation with Other Domains
Each time the Octagon abstract domain computes a new interval for a variable, it broadcasts
a Itv_msg message or a Known_value_msg message to other domains to keep them in sync. As
we already explained, another kind of cooperation is with the linearization abstract domain
to get quasi-linear forms for expressions.
The Octagon abstract domain does not answer any query. It could answer get_itv queries

for variables, but, due to its complicated data structures, the answer to the query would be
costly. Moreover, this would be redundant with the answer of the interval abstract domain,
since the latter is supposed to be kept in sync with the Octagon abstract domain.

14E.g., we are not able to build the octagonal constraint a− b ≤ 0 from the linear constraint 2a− 2b ≤ 0.

177

IV
Perspectives and Conclusions

Chapter 9
Data Structures with Sharing in Coq1

Designing a realistic static analyzer is not only a matter of finding precise approximations of
programs. The efficiency of the analyzer is also of prime importance. The need for efficient
algorithms and data structures goes beyond what was previously needed for formally proved
programs in Coq. It is very common to see state-of-the-art static analyzers run for several
hours to prove programs correct. For example, the authors of the very scalable high-
performance Astrée static analyzer report analysis time of more than one day and use
several gigabytes of memory [CCF+09].
Verasco is far from the performance of these highly-tuned analyzers. Nevertheless, the

design of the data structures used for the many abstract domains of Verasco is of prime
importance. In particular, we need efficient maps that support relatively fast element access
and sharing. The sharing mechanism is not only needed for reducing memory consumption:
when computing a join or a widening of very similar abstract values, it is essential that very
little computation be needed, because join points are very frequent in real code.
The usual way [BCC+02, Section 6.2][CCF+09, Section 4.2] of implementing such an

efficient join operation for maps in OCaml is to use physical equality: in functional languages
such as OCaml, there are two equality operators. The structural equality traverses its
parameters and compares the information stored in data structures, while the physical
equality compares the memory location used to store the given values. In particular, two
physically equal objects are necessarily structurally equal, but the converse is false. Roughly,
if we assume that the OCaml compiler did not optimize the code, two physically equal values
have necessarily been created at the same time.
In our case, if two branches of a tree representing a map are physically equal, we know

for sure that they contain the same abstract value, so that the join is trivial. However,
introducing physical equality directly in a Coq program would be unsound. Indeed, in
Coq, two values having the same structure are indistinguishable, and can be used instead of
each other in any expression. However, two structurally equal values that are not physically
equal are distinguishable using the physical equality. In Section 9.1, with the help of depen-
dent types, we give a way of using physical equality in Coq programs without introducing
unsoundness. We currently use this methodology in Verasco’s data structures.
However, this method has some limitations: for example, it does not permit doing max-

imal sharing, also known as hash-consing, in Coq. Hash-consing can be used for several
1Apart from Section 9.1, this chapter describes the Coq code available at https://github.com/braibant/

hash-consing-coq

181

https://github.com/braibant/hash-consing-coq
https://github.com/braibant/hash-consing-coq

Chapter 9. Data Structures with Sharing in Coq

purposes: first, it provides a fast mechanism for comparing values using physical equal-
ity or hash equality. Second, it is easy to use hash-consing to build fast map structures
using hash-consed values as keys. Finally, using such maps it is possible to implement
memoization.
This assessment led us, in collaboration with Braibant and Monniaux [BJM13, BJM14],

to the study of several methods to implement maximal sharing (i.e., hash-consing) and
memoization in formally verified Coq programs. We used the case study of binary decision
diagrams (BDDs), which are one of the well known uses of the hash-consing technique. We
tried different approaches and compared them, as reported in the following sections. These
ideas are not currently implemented in Verasco, but we believe some of them (especially the
smart and smart+uid approaches described in Section 9.4) could be adapted to many of
its data structures.

9.1. Safe Physical Equality in Coq: the physEq
Approach

The obvious way of introducing physical equality in Coq is to declare it as an axiom in the
development, state that physical equality implies Leibniz equality, and ask the extraction
mechanism to extract it to OCaml’s physical equality:

Parameter physEq: ∀ A:Type, A -> A -> bool.
Axiom physEq_correct: ∀ (A:Type) (x y:A), physEq x y = true -> x = y.
Extract Constant physEq => "(==)".

However, this appears to be unsound. Let a and b be two physically different copies of
the same value. Then we have physEq a a = true and a = b, using Coq’s Leibniz equality.
Thus, we deduce, in Coq’s logic, that physEq a b = true, which is wrong.
This unsoundness is of a particular kind: in fact, the axioms we postulate are not in-

consistent: they can be easily instantiated by posing physEq x y = false. However, the
OCaml term (==) is not a valid extraction for physEq, and using it would make it possible
to prove properties on programs that will become false after extraction.
In order to circumvent this problem, we propose to avoid having physical equality in the

language. Instead, we provide a term that enables us to use physical equality, just like a
church Boolean would enable us to use a Boolean without manipulating a term of type bool:
that is, we expose a function, taking as parameter the values of each branch of the test of
physical equality. In order to make sure no use of physical equality is harmful, we add the
condition, as an additional dependent parameter in Prop, that both branches are actually
equal in the case of physical equality. Thus, the type of physEq becomes:

physEq: ∀ {A B:Type} (x y:A) (eq neq:B) (H:x = y -> eq = neq), B.

Note that, as is, physEq is not useful, because both branches are always executed. There
is a simple solution: delaying the evaluation of branches by hiding them behind a function
taking the unit value as parameter:

physEq: ∀ {A B:Type} (x y:A) (eq neq:unit -> B)
(H:x = y -> eq tt = neq tt), B.

This declaration is extracted to a simple OCaml term:

Extract Constant physEq =>
"(fun x y eq neq -> if x == y then eq () else neq ())".

182

9.1. Safe Physical Equality in Coq: the physEq Approach

Adding such a term in Coq does not add any inconsistency in the logic. Indeed, one can
see that any implementation of physEq will always return neq tt2, which is a well-typed
implementation, so that we can use it to define physEq:

Definition physEq {A B:Type} (x y:A) (eq neq:unit -> B)
(H:x = y -> eq tt = neq tt) :=

neq tt.

This is equivalent to the OCaml implementation, because, in the case where x == y, then
x = y and then eq tt = neq tt. This reveals a constraint on the use we will be able to do
of physEq: the only allowed uses are the uses where a physical equality does not change the
behavior of the program. It only allows for optimizations (either for space or for time) that
gives an alternate implementation when some values are equal.
There is one additional feature in our implementation of physEq. Sometimes we need to

nest occurrences of physEq, and, in this case, the fact that x = y in the eq branch may be
needed to give of proof for the parameter H in the nested call. For this reason, we give as
parameter of the eq branch the precondition that x = y. The implementation becomes:

Definition physEq {A B:Type} (x y:A)
(eq:{_:unit | x = y} -> B)
(neq:unit -> B)
(H:∀ (e:x = y), eq (exist _ tt e) = neq tt) : B :=

neq tt.

For proving the dependent parameter of physEq, we use either the refine tactic or the
Program commands [Soz07]. Both support writing the terms in Gallina syntax, leaving holes,
and then filling the holes using tactics.
For convenience, we use the following notation instead of directly using physEq:

Notation "'ifeq' x == y 'then' A 'else' B" :=
(physEq x y (fun _ => A) (fun _ => B) _) (at level 200).

In Verasco, we use physEq mainly for two different purposes. In Section 9.1.1, we will
study its use for optimized versions of the combine primitive on maps. They are essential
for the performance of join and widening. In Section 9.1.2, we will explain that it can be
used for building data structure with more sharing.

9.1.1. Exploiting Sharing When Combining Maps

A common data structure in CompCert and Verasco are finite maps. A finite map contains
a finite set of bindings from keys to values, using an efficient tree data structure. Finite
maps support the get and set operations for reading efficiently a binding and for modifying
or creating a binding. These data structures also provide operations for computing directly
on the whole set of bindings. On such primitive is combine. It takes two maps as parameters,
and a function, and applies this function on all the bindings of the two maps. Here is its
type and specification:

combine: ∀ (A B C: Type), (option A -> option B -> option C) -> t A -> t B -> t C
gcombine: ∀ (A B C: Type) (f: option A -> option B -> option C),

f None None = None ->
∀ (m1: t A) (m2: t B) (i: elt),

get i (combine f m1 m2) = f (get i m1) (get i m2).

2if x == y, then eq tt = neq tt, so that neq tt is returned, otherwise neq tt is returned

183

Chapter 9. Data Structures with Sharing in Coq

where t X is the type of maps containing data of type x.
It is natural to use this primitive, for example, when implementing join and widening in,

non-relational domains like intervals or congruences. If we give it a join function operating
on one abstract value, combine is able to compute a join operation over entire abstract
environments.
However, combine has a serious performance problem, because it requires iterating over

entire abstract environments. Most often, we perform join operations on very similar ab-
stract environments: in the case of a test, for example, the only affected variables are the
ones assigned in either branch, which is expected to be a small fraction of the variables of
the program. A common way of solving this problem is to skip physically equal branches
of the maps. This corresponds to forcing x ⊔ x = x for any abstract value, which seems
reasonable.
In order to exploit sharing in join and widening and in other places of the implementa-

tion, we added two optimized versions of combine to the operations over CompCert maps:
shcombine and shcombine_diff.
The first one, shcombine, takes, like combine, a function that it applies to each of the

bindings of the given maps. However, it requires an additional pre-condition as argument,
imposing that the given function is the identity if given two equal parameters3:

shcombine: ∀ (A:Type) (f:key -> option A -> option A -> option A),
(∀ x v, f x v v = v) -> t A -> t A -> t A.

This primitive is implemented similarly to combine, except that, at each node, it checks
whether the branch given as its first argument is physically equal to the branch given as its
second argument. If so, no computation is done, and the map is returned as-is. This will
return the same result as if the computation were done, since the hypothesis on f will force
the result to stay equal to the parameters in this case.
The shcombine primitive gave a dramatic improvement of Verasco’s performance (a factor

if 100, at least). This, however, adds the constraint x ⊔ x = x on the join operation over
abstract values; this has to be proved for each non-relational abstract domain.
Another common operation that can leverage sharing is computing the differences between

two abstract domains. For example, it is used when computing the messages that need to
be sent in the message channel (see Section 3.3.1): after an abstract transfer function, the
abstract domain needs to compute what has been changed, and send messages accordingly.
Similarly, combine can be used for this purpose, but it needs to traverse entire maps, even
if the difference is very small.
We introduce a new primitive, shcombine_diff, that is a dual of shcombine: instead of

forcing equal binding to stay, it forces them to disappear:

shcombine_diff: ∀ (A B:Type) (f:key -> option A -> option A -> option B),
(∀ x v, f x v v = None) -> t A -> t A -> t B.

Its implementation follows the same scheme, and it also massively improves the perfor-
mances of some operations.

9.1.2. Improving Sharing Using Physical Equality

In order to leverage as much as possible the potential of the primitives described in Sec-
tion 9.1.1, it is clear that improving the sharing in the data structures is profitable. For

3For more flexibility, the given function also takes as parameter the key corresponding to the bindings, but
this is a detail.

184

9.2. Introduction to Hash-Consing, Memoization and BDDs

this reason, in many places, we try to use previously existing data structures instead of
allocating new ones.
To illustrate this methodology, let’s recall how CompCert trees are built: they are tries

indexed by Coq’s values of type positive (i.e., strictly positive integers represented in
binary). That is, they are trees, where each node contains the value corresponding to the
integer whose binary representation stops at this place, a subtree containing values whose
binary representation has a 1 at the corresponding position and the symmetric subtree for
integers using 0 at this position. They are represented using a simple Coq Inductive type:
Inductive tree (A : Type) : Type :=
| Leaf : tree A
| Node : tree A -> option A -> tree A -> tree A.

In the implementation of Verasco’s maps (and in many other places that can take advan-
tage of sharing), we try not to directly use the Node constructor4. Instead, when possible, we
use the Node_sh constructor, that tries to use a given candidate if its children are physically
equal. Its implementation is as follows:

Program Definition Node_sh {A:Type}
(* m = Node l o r is the candidate used if children are

physically equal. *)
(m:t A) (l:t A) (o:option A) (r:t A) (eqm:m = Node l o r)

(* m' tt = Node l' o' r' is the node we are building. *)
(l':t A) (o':option A) (r':t A) (m':unit -> t A)
(eqm':m' tt = Node l' o' r')

: t A :=
ifeq l == l' then
match o, o' with
| None, None => ifeq r == r' then m else m' tt
| Some v, Some v' =>

ifeq v == v' then (ifeq r == r' then m else m' tt) else m' tt
| Some _, None | None, Some _ => m' tt
end

else
m' tt.

Next Obligation. [...] Qed.

Note that, in the case it cannot use the given candidate, Node_sh does not actually builds
the node. Instead, it calls a function, m', that is supposed to do this work. This makes it
possible to use another call to Node_sh in m', in order to try different candidates.
The use of this smart constructor is a bit cumbersome when programming functions on

trees, but the complexity disappears in the proofs: because of the definition of physEq, it
appears that a call to Node_sh is convertible to a simpler call to the usual constructor Node.

9.2. Introduction to Hash-Consing, Memoization and
BDDs

Hash-consing is a programming technique used to share identical immutable values in mem-
ory, keeping a single copy of semantically equivalent objects. It is especially useful in order
to get a compact representation of abstract syntax trees, and provide fast hash and compar-
ison functions over them, so that it could be advantageously used in Verasco for representing
the different kinds of expressions, for example. A hash-consing library maintains a global

4The Leaf constructor is not allocated in a separated bloc in memory, so that sharing does not make sense.

185

Chapter 9. Data Structures with Sharing in Coq

pool of expressions and never recreates an expression equal to one already in memory, in-
stead reusing the one already present. In typical implementations, this pool is a global hash
table. Hence, the phrase hash-consing denotes the technique of replacing node construction
by a lookup in a hash table returning a preexisting object, or creation of the object followed
by insertion into the table if previously nonexistent. This makes it possible to get maximal
sharing between objects, if hash-consing is used systematically when creating objects.
Moreover, a unique identifier is given to each object, allowing fast hashing and compar-

isons. This makes it possible to do efficient memoization (also known as dynamic program-
ming): the results of an operation are tabulated so as to be returned immediately when an
identical sub-problem is encountered.
The typical way of implementing hash-consing (a global hash table) does not translate

easily into Coq. The reason is that Coq is a purely applicative language, without imperative
traits such as hash tables, pointers, or pointer equality. In the following Sections, we discuss
how hash-consing can be implemented using the Coq proof assistant (without modifying it)
with two possible use cases in mind:

• Efficient execution when extracted to OCaml, similarly to CompCert and Verasco.
Hash-consing could be used for abstract syntax trees; the BDD library could be di-
rectly used in a formally proved model-checking or static analysis tool like Verasco.

• Execution inside Coq with reasonable efficiency, e.g., for proofs by reflection.

More precisely, we present a few design patterns to implement hash-consing and mem-
oization on various examples, and we use binary decision diagrams (BDDs) as our prime
example. We evaluate these design patterns based on several criteria. For instance, we
discuss for each pattern how we handle the maximal sharing property and how easy it is
to prove the soundness of our implementation. We also discuss whether it is possible to
compute inside Coq with a given solution.

9.2.1. A Primer on Binary Decision Diagrams

In the following, we use “reduced ordered binary decision diagrams” (ROBDDs, BDDs for
short) as a running example of hash-consed data structures. BDDs are representations of
Boolean functions and are often used in software and hardware formal verification tools, in
particular model checkers [Knu11].

The data structure

A Boolean function f : {0, 1}n → {0, 1} can be represented as a complete binary tree with
2n − 1 decision nodes, labeled by variables xi according to the depth i from the root (thus
the adjective ordered); edges are labeled 0 and 1; leaves are labeled T (for true) or F (for
false). The semantics of such a diagram is: f(x1, . . . , xn) is obtained by traversing from the
root and following the 0 or 1 edge of a node labeled by xi according to the value of xi.
Such a tree can be reduced by merging identical subtrees, thus becoming a connected

directed acyclic graph (DAG; see second diagram in Figure 9.1); furthermore, decision nodes
with identical children are removed (see third diagram in Figure 9.1). These transformations
preserve semantics. The reduced representation is canonical: given a variable ordering
x1, . . . , xn, a function is represented by a unique ROBDD.

186

9.2. Introduction to Hash-Consing, Memoization and BDDs

x1

x2

T

0

F

1

0

x2

T

0

F

1

1 ⇝
x1

x2

T

0

F

1

0 1 ⇝
x2

T

0

F

1

Figure 9.1: The BDD for the function f(0, 0) = f(1, 0) = T, f(0, 1) = f(1, 1) = F

Building BDDs

In practice, one directly constructs the reduced tree; let us see how. All BDD nodes allocated
so far are stored in a global hash table, so that a new object is created only if not already
in the hash table: there are never two identical objects at two different locations in memory,
a crucial invariant that must be maintained throughout the execution.
Each BDD node is given a unique identifier: for instance, the current value of a global

64-bit counter incremented following each allocation5. Since a new object is never created
if an identical object already exists, two objects are equal if and only if they have the
same unique identifier. The equality test, which is usually expensive over tree structures,
since it requires full traversal, is instead implemented by a very fast comparison of unique
identifiers.
Unique identifiers are also used for hashing. When attempting to construct a node

(v, b0, b1) where v is the variable, b0 is the subtree labeled 0 and b1 is the subtree labeled 1,
one computes the hash value of the node as H(v, u0, u1) where u0 and u1 are the respective
unique identifiers of the subtrees b0 and b1. This hash value is then used to look up the
node in the hash table. Again, such shallow hashing is considerably faster than having to
traverse the tree structures.

Operations on BDDs

The principal way to build BDDs is to combine the diagrams of two functions f and g
in order to obtain the BDD for other functions such as f ∧ g, f ∨ g of f ⊕ g. The basic
combinator of BDDs is called node melding [Knu11]. Intuitively, melding corresponds to
a traversal of the internal nodes of two BDDs to build a third diagram. This traversal
respects the order on variables, and thus, the third diagram will naturally be ordered.
Then, all binary operations on BDDs are defined as one particular instance of melding.
Suppose that we have two nodes α = (v, l, h) and α′ = (v′, l′, h′). The melding of α and

α′, denoted by α ⋄ α′ is defined as follows:

α ⋄ α′ =

(v, l ⋄ l′, h ⋄ h′) if v = v′

(v, l ⋄ α′, h ⋄ α′) if v < v′

(v′, α ⋄ l′, α ⋄ h′) if v > v′

Then, the binary operation ⋄ is entirely defined by the results of

F ⋄ α α ⋄ F T ⋄ α α ⋄ T
5In certain implementations, the unique identifier is the address of the node; this supposes that objects

never change address, which is not the case in OCaml.

187

Chapter 9. Data Structures with Sharing in Coq

For instance, the conjunction operation f ∧ g can be defined by melding the BDDs for f
and g, and using the following rewrite rules for the leaf cases:

F ⋄ α→ F α ⋄ F→ F T ⋄ α→ α α ⋄ T→ α

For the sake of clarity, we focus on binary operations in the following: they are representative
of the difficulties we had to face6.

Memoization

The fact that each node has a unique identifier also makes it possible to memoize the results
of BDD operations. One keeps a map from sub-problems (a pair of nodes α and α′) to nodes
(the result of α⋄α′), so as to be returned immediately when a previously solved sub-problem
is encountered.
In a BDD library, memoization is crucial to implement the or/and/xor operations with

time complexity in O(|a|.|b|) where |a| and |b| are the sizes of the inputs: as the function
is executed, its results on the subtrees of the original problem are stored in a structure
indexed by (ua, ub) where ua and ub are the unique identifiers of the a and b inputs. In con-
trast, the naive approach has exponential complexity, since the function may be evaluated
exponentially often on the same couple of subtrees.

9.2.2. Memoization in Coq: the State of the Art

State monad

The first idea to implement memoization in Coq is to use a dedicated data structure to
tabulate function calls: that is, use a finite map of some sort to store the pairs (argument,
result) for a given function. Users of a library implemented in this fashion must, then,
thread this state through the program using a state monad.
While this solution always works, it has non-negligible verification cost: we must prove

that the bindings in the memoization table are correct, i.e., the values held in the table
correspond to the result of the would-be corresponding function calls.
Then, if we memoize a function of type A -> B, we get a function of type A -> M B, where M

is the type constructor associated with our state monad. Even if the latter seems equivalent
to the former, these types are different: therefore, this tiny modification (memoizing a
function) requires modifying every caller of the memoized function to use a monadic style.
Since it is cumbersome to perform all computations inside a state monad, we continue

this section with a review of other (partial) solutions to the memoization problem.

Shallow memoization

It is possible in some cases to make a shallow embedding of this memoization table in
Coq. Melquiond [Mel12] describes how to use co-inductive objects as a cache that stores
previously computed values of a given function. In this section, we present his clever idea in
Figure 9.2, with a few cosmetic changes7. A lazy value is defined as a co-inductive, which
will effectively be represented as a thunk when executed by Coq’s virtual machine, and will
be extracted to OCaml as a Lazy.t thunk. A thunk is a term whose evaluation is frozen
until it is actually needed (lazy evaluation), then the computed value is cached in the thunk

6Note that we only need two rewrite rules for commutative binary operations.
7We found out that similar definitions actually made their way into Coq’s standard library under the name

StreamMemo.v.

188

9.2. Introduction to Hash-Consing, Memoization and BDDs

Section t.
Context {A : Type}.
CoInductive lazy : Type :=
| Thunk : A -> lazy.

CoInductive lazies : Type :=
| Cons : lazy -> lazies -> lazies.

Fixpoint nth n cst :=
match n, cst with
| O, Cons (Thunk xi) _ => xi
| S p, Cons _ c => nth p c
end.

CoFixpoint mk_lazy {B} f (n : B) :=
Thunk (f n).

CoFixpoint memo' f n :=
Cons (mk_lazy f n) (memo' f (S n)).

Definition memo f := memo' f 0.
End t.

(* A costly version of the identity *)
Fixpoint big {A} n : A -> A:=
match n with
| 0 => fun x => x
| S n =>fun x => big n (big n x)
end.

Definition id n := big n n.
Definition k := memo id.
Definition run x := nth x k.

Figure 9.2: Memoization using co-inductives

so that it is instantly returned in case the term is evaluated again (thus, performing a kind
of memoization).
Then, lazies represents a stream (an infinite list) of thunks, that can be peeked at using

nth. Each time the virtual machine has to destruct the cst argument of nth, it will remember
the two arguments of this cons cell. Then, it suffices to build a stream memo that computes
the value of a function f for each possible natural number: in practice, f will be evaluated
lazily, and only once per input value.
As an example, the following snippet of code memoizes the time-consuming function id.

(Remark that it also demonstrates that the intermediate calls to id are not memoized.)

Time Eval vm_compute in run 26. (* 6s *)
Time Eval vm_compute in run 26. (* 0s *)
Time Eval vm_compute in run 25. (* 3s *)
Time Eval vm_compute in run 25. (* 0s *)
Time Eval vm_compute in id 25. (* 3s *)
Time Eval vm_compute in id 25. (* 3s *)

Note that this clever trick is not limited to functions over Peano numbers, and could be
adapted for branching structures, e.g., memoizing functions over binary numbers. Unfor-
tunately, it seems hard to adapt this idea to memoize recursive calls: consider for instance
the function

189

Chapter 9. Data Structures with Sharing in Coq

Fixpoint exp n := match n with 0 => 1 | S n => exp n + exp n end.

In order to compute exp using a linear number of recursive calls we need a memoizing
fixpoint combinator rather than a way to memoize a predefined function.
(To be complete, let us add that functions f : nat -> A that can be expressed as the

iteration of a given function g : A -> A, can actually be memoized using the aforementioned
technique. While we obviously could rewrite exp to fit into that scheme, this is not the case
of the other functions that we use through our developments.)
This problem is somewhat representative of the one that we have to face when it comes

to BDDs: first, memoizing fixpoint combinators are crucial; second, the function that we
memoize depends on the global state of the hash-consing machinery, which evolves through
times. In both cases, we fall out of the scope of the above trick: there is no predefined
function to memoize.

Adjustable references

Now, we turn to a partial solution to the memoization problem, that works when the user
is solely interested in executing the code extracted from a Coq program.
Vafeiadis [Vaf13] introduced a restricted form of mutable state called adjustable references.

The idea is that adjustable references store some internal value that can only be updated in
innocuous ways. That is, adjustable references are equipped with an observation function;
and the update function ensures that the result of the observations remain equals through
updates. It is therefore possible to adjust the values held in the references in a way that
changes, e.g., the costs of some computations, yet does not change the result of these
computations.
Vafeiadis demonstrated how to use adjustable references to memoize a function f by

tabulating its results: the adjustable reference internal state is a finite map, while the
observation function simply returns f. Updating the contents of the finite map does not
change the observation function; but subsequent reads may make use of the fact that a value
was previously computed and stored inside the memoization cache. We refer the reader to
Vafeiadis’ article for more details about this idea.
Remark that it is again the case that this technique does not scale to the definition of

memoizing fixpoint combinators. Therefore, adjustable references do not quite fit our needs
either.

9.2.3. Implementing BDDs in Coq.
The following two Sections 9.3 and 9.4 describe a total of four implementations of BDDs in
Coq. To make things clear for the reader, we give each of these implementations a reference
name, a pointer to the relevant section of the chapter and a short description.
pure-deep. See Section 9.3.1. A pure Coq implementation of BDDs that makes a deep

embedding of memory as finite maps and uses indices as surrogates of pointers.

pure-shallow. See Section 9.3.2. A pure Coq implementation of BDDs that uses a
shallow embedding of memory.

smart. See Section 9.4.1. An ”impure” implementation of BDDs in Coq: we implement
hash-consing and memoization through the extraction mechanism of Coq.

smart+uid. See Section 9.4.2. A variation on the previous approach in which we discuss
how to expose and axiomatize the operations on the unique identifiers associated with
BDD nodes.

190

9.3. Pure BDD Implementations

9.3. Pure BDD Implementations
We describe two pure Coq implementations of BDDs libraries in this section, that differ
mainly by the way we model the memory and the allocation of nodes.

9.3.1. The pure-deep Approach
The idea here is to model the memory using finite maps inside Coq and use indices in the
maps as surrogates for pointers, implementing BDD operations as manipulations of these
persistent maps. Such an implementation8 was described in [VGLPAK00, VGL00], but we
propose a new one here for the sake of completeness, and because the old one did not age
well w.r.t. the evolution of Coq. Our implementation is defined as follows.
First, we assign a unique identifier to each decision node. Second, we represent the

directed acyclic graph underlying a BDD as a Coq finite map from identifiers to decision
nodes (that is, tuples that hold the left child, the node variable and the right child). For
instance, the following graph, on the left, can be represented using the map on the right.

x1

x2

x3

TF

1 7→ (F, x1, N 2)
2 7→ (F, x2, N 3)
3 7→ (F, x3, T)

Then, we implement the hash-consing pool using another map from decision nodes to node
identifiers and a next counter that is used to assign a unique identifier to a fresh node. In
the situation above, next is equal to 4 and the hash-consing map is defined as follows:

(F, x1, N 2) 7→ 1
(F, x2, N 3) 7→ 2
(F, x3, T) 7→ 3

Notations

We allow us some liberty when it comes to finite maps (that are pervasive in our code):
the notation t ⇝ s denotes a type of efficient maps from type t to type s; and we use
indiscriminately the notations get and set that respectively access and update such finite
maps. Implicitly, these two notations have the following types:

get : A -> (A ⇝ B) -> option B
set : A -> B -> (A ⇝ B) -> (A ⇝ B)

Note that we do use the efficient finite maps from the Coq standard library; but we chose
here to abstract from the particular module definitions and names that we have to use in
our code, for the sake of legibility. In the following, we use Coq’s positive numbers positive
as unique identifiers, and use Patricia trees for finite maps.
Figure 9.3 shows our inductive definitions and the code of the associated allocation func-

tion mk_node, knowing that alloc n st allocates the fresh node n in the hash-consing state
st (taking care of updating both finite maps and incrementing the “next fresh” counter).
Then, equality between BDDs (eqb) is provided by decidable equality over node identifiers.

8One should also mention the seminal work by E. Ledinot in 1993 on the canonicity of binary decision
dags, available from the Coq contributions.

191

Chapter 9. Data Structures with Sharing in Coq

Inductive expr := F | T | N : positive -> expr.

Definition eqb a b :=
match a,b with
| T,T => true
| F,F => true
| N x, N y => (x =? y)
| _, _ => false
end.

Definition node := (expr * var * expr).

Record hashcons_state := {
graph : positive ⇝ node;
hmap : node ⇝ positive;
next : positive

}.

Definition alloc u st :=
(st.(next), {|
graph := set st.(next) u st.(graph);
hmap := set u st.(next) st.(hmap);
next := st.(next) + 1

|}).

Definition mk_node (l : expr) (v : var) (h : expr) st :=
if eqb l h then (l,st)
else match get (l,v,h) st.(hmap) with

| Some x => (N x, st)
| None => let (x, st) := alloc (l,v,h) st in (N x, st)
end.

Figure 9.3: Hash-consing in pure Coq, using a deep-embedding

All operations thread the current global state in a monadic fashion. The correctness of
BDD operations corresponds to the facts that 1) the global state is used monotonically (that
is the structure of the resulting global state is a refinement of the input one, see Figure 9.4);
2) the resulting global state is well-formed; and 3) the denotation of the resulting BDD
expression is correct.

Invariants and well-formedness properties

We present the well-formedness properties we preserve over expressions (wf_expr) and over
hash-consing states (wf_hashcons) in Figure 9.5. The inductive predicate wf_expr st v e
depends on a variable level v that indicates a bound over the variable identifiers appearing in
the BDD e. This ensures that variables are kept ordered. Then, a well-formed expression is
either a leaf (cases wf_T and wf_F) or a pointer to a hash-consing node with a head variable w
less than the bound v. (Remark that this definition of well-formed expression is not directly
recursive, because the actual recursion takes place in the definition of wf_hashcons below;
this notion of well-formed expressions coupled with well-formedness of the state suffice to
prove that expressions are DAGs with a suitable ordering on the variables.)
The predicate wf_hashcons is the general well-formedness property over hash-consing

states. The predicate wf_bijection ensures that the two maps hmap and graph form a
bijection; wf_expr_lt_next ensures that the next fresh variable counter will indeed produce
fresh variables; wf_map_wf_expr_l and wf_map_wf_expr_r ensure that a node stored in the

192

9.3. Pure BDD Implementations

Record incr (st1 st2 : hashcons_state) : Prop := {
incr_lt : st1.(next) ≤ st2.(next);
incr_find : ∀ p x, get p st1.(graph) = Some x

-> get p st2.(graph) = Some x
}.

Figure 9.4: Monotonicity predicate over hash-consing states

Inductive wf_expr st : var -> expr -> Prop :=
| wfe_T : ∀ v, wf_expr st v T
| wfe_F : ∀ v, wf_expr st v F
| wfe_N : ∀ (p : positive) (l : expr) (w: var) (h : expr),

get p st.(graph) = Some (l, w, h) ->
∀ (v : var), (w < v) ->
wf_expr st v (N p).

Record wf_hashcons (st : hashcons_state) : Prop := {
wf_bijection : ∀ p n, get n st.(hmap) = Some p

<-> get p st.(graph) = Some n;
wf_expr_lt_next : ∀ p v, wf_expr st v (N p)

-> p < st.(next);
wf_map_wf_expr_l : ∀ p x v y, get p st.(graph) = Some (x, v, y)

-> wf_expr st v x;
wf_map_wf_expr_h : ∀ p x v y, get p st.(graph) = Some (x, v, y)

-> wf_expr st v y;
wf_reduced : ∀ p l v h, get p st.(graph) = Some (l, v, h)

-> l <> h
}.

Figure 9.5: Well-formedness of hash-consing state

hash-consing structure has well-formed children, respecting the variable order; wf_reduced
ensures that all those nodes are reduced (ie. their left child is different from their right
child).
Note that the statement that the hash-consing structure is correct corresponds to the

components wf_bijection and wf_expr_lt_next. The other statements correspond to prop-
erties about BDDs, namely the facts that they are reduced and ordered.

The denotation of BDD expressions.

Recall that BDD expressions, as we have defined them in this section, do not have an
inductive structure we can follow: this means that we cannot define the semantics of BDD
expressions as a Coq fixpoint. Rather, we have to define the semantics of BDD expressions
as an inductive predicate that uses the state of the hash-consing data structure to go through
the graph. The inductive value is shown on Figure 9.6. It is defined as a binary relation with
two parameters (the valuation of variables env and the state of the hash-consing structure
st) and two arguments: the expression and its denotation (a Boolean).
We only use the type of environments env to establish a semantics, thus efficiency is not

an issue. However, we prefer to use finite maps of some kinds to represent environments:
using a function of type var -> bool would force the client to reason about the fact that
some BDD expressions are insensitive to the valuation of some variables. Using a finite map
make this reasoning internally in our library and eases the client’s life.

193

Chapter 9. Data Structures with Sharing in Coq

Inductive value env st : expr -> bool -> Prop :=
| value_T : value env st T true
| value_F : value env st F false
| value_N : ∀ (p : positive) (l : expr) (v : var) (h : expr),

get p st.(graph) = Some (l, v, h) ->
∀ (vv : bool), get env v = Some vv ->
∀ (vhl : bool), value env st (if vv then h else l) vhl ->

value env st (N p) vhl.

Figure 9.6: The denotation of BDD expressions

Record memo := {
mand : (positive * positive) ⇝ expr;
mor : (positive * positive) ⇝ expr;
mxor : (positive * positive) ⇝ expr;
mneg : positive ⇝ expr}.

Record state := { ... :> hashcons_state; ... :> memo}.

Figure 9.7: Adding memoization tables to the global state

Termination of BDD operations

The first problem that we have to solve in our Coq representation is that, as can be expected
from our data structure, BDD operations cannot be defined using structural recursion (there
is no inductive structure to follow). Unfortunately, we cannot easily use well-founded re-
cursion here because the well-founded relation involves both parameters of the function and
the global state.
The problem is that the termination of the BDD operations relies on the fact that the

graph of nodes is acyclic; but the graph is not fixed through an execution of the melding
operation! Rather, the global state is threaded in the recursive calls of ⋄. Therefore,
proving the recursive calls to be well-founded requires to prove that the ⋄ operation is
monotonic w.r.t. graph inclusion. In order to prove termination, we would have to define
the fixpoint and prove this monotonicity property at the same time. This would involve
embedding invariants directly in the global state, using dependent types. This has two
major drawbacks: first, defining terms containing complex dependent types is cumbersome
and proving properties about them is often very challenging. Second, we would have to pay
close attention to prevent Coq from normalizing those proof terms if we want to use this
library for reflection purposes.
In the end, we resorted to define partial functions that use a fuel argument to ensure

termination: that is, they use an explicit bound on the number of iterations to do.

Memoizing operations

Finally, it is possible to enrich our hash-consing structure with memoization tables in order
to tabulate the results of BDD operations.
The memoization tables (see Figure 9.7) are passed around by the state monad, just as

the hash-consing structure. It is then necessary to maintain invariants on the memoization
information.
In the definition of state, we use two field coercions (denoted :>) to declare coercions

from the type state to the types hashcons_state and memo. In practice, this means that
one can use a state in any expression that would expect the result of one of these two

194

9.3. Pure BDD Implementations

Record wf_memo2 (st : hashcons_state) (m : (positive * positive) ⇝ expr)
(opb : bool -> bool -> bool) : Prop :=

{ wf_memo2_find_wf_res :
∀ x y e, get (x, y) m = Some e

-> wf_expr st v (N x) -> wf_expr st v (N y)
-> wf_expr st v e;

wf_memo2_find_wf :
∀ x y e, get (x, y) m = Some e ->
∃ s v, wf_expr st v (N x) /\ wf_expr st v (N y);

wf_memo2_find_sem :
∀ x y res, get (x, y) m = Some res ->
∀ env vx vy, value env st (N x) vx -> value env st (N y) vy ->

value env st res (opb va vb)
}.

Record wf_memo_neg (st : hashcons_state) (m : positive ⇝ expr) : Prop :=
{ ... }.

Record wf_memo (st : state) : Prop :=
{ wf_memo_mand : wf_memo2 st st.(mand) Datatypes.andb;

wf_memo_mor : wf_memo2 st st.(mor) Datatypes.orb;
wf_memo_mxor : wf_memo2 st st.(mxor) Datatypes.xorb;
wf_memo_mneg : wf_memo_neg st st.(mneg)

}.

Record wf_st (st : state) : Prop :=
{ ... : wf_hashcons st;

... : wf_memo b
}.

Figure 9.8: Invariant over the memoization information

projections.
We present the invariants over the memoization maps for the binary operations9 in Fig-

ure 9.8. First, we have to prove that the nodes referenced in the domain and in the codomain
of those tables are well-formed and that those tables keep the bounds over the variables
correct. Then, we have to state that the memoization information is semantically correct.
One downside of this data structure definition is that we are forced to define one table per
operation that we want to memoize, and that this is not modular: adding a new operation
requires modifying the definition of the memoization state and add the corresponding field
in the wf_memo record.
(Note that finding the correct pattern of memoization for a program is still an art rather

than a science: using the data structure above, we keep the memoized values from one run
of an operation to the other. In this section, we will settle on this conservative strategy,
but other memoization strategies are possible that yield different performance and memory
consumption profiles.)

A mouthful of code

The final version of our code is shown on Figure 9.9. We use a do-notation à la Haskell to
make it more palatable.
Then, we prove that under some hypotheses, this combinator is correct: that is, it pro-

duces well-formed hash-consing structures and memoization tables, and the denotation of
9The case of the negation operation is similar and is not detailed.

195

Chapter 9. Data Structures with Sharing in Coq

Section combinator.
(* fx is the base case when one operand is F *)
Variable fx : expr -> state -> option (expr * state).
(* tx is the base case when one operand is T *)
Variable tx : expr -> state -> option (expr * state).
Variable memo_get : positive -> positive -> state -> option expr.
Variable memo_update : positive -> positive -> expr -> state -> state.

Definition memo_node a b l v h st :=
let (res, st) := mk_node l v h st in
let st := memo_update a b res st in
(res,st).

Fixpoint combinator depth :
expr -> expr -> state -> option (expr * state) :=

fun a b st =>
match depth with
| 0 => None
| S depth =>

match a,b with
| F, _ => fx b st
| _, F => fx a st
| T, _ => tx b st
| _, T => tx a st
| N na, N nb =>

match memo_get na nb st with
| Some p => Some (p,st)
| None =>
do nodea <- get na st.(graph);
do nodeb <- get nb st.(graph);
let '(l1,v1,h1) := nodea in
let '(l2,v2,h2) := nodeb in
match Pos.compare v1 v2 with
| Eq =>

do x, st <- combinator depth l1 l2 st;
do y, st <- combinator depth h1 h2 st;
Some (memo_node na nb x v1 y st)

| Gt =>
do x, st <- combinator depth l1 b st;
do y, st <- combinator depth h1 b st;
Some (memo_node na nb x v1 y st)

| Lt =>
do x, st <- combinator depth a l2 st;
do y, st <- combinator depth a h2 st;
Some (memo_node na nb x v2 y st)

end
end

end
end.

End combinator.

Figure 9.9: Deep combinator for binary operations

196

9.3. Pure BDD Implementations

the resulting expression is correct. For the sake of clarity, we will not expose these hypothe-
ses nor the resulting correctness theorem here, and refer the interested reader to the Coq
development10.

Implementing the conjunction

However, we demonstrate the use of this combinator on the particular example of the and
function; all other binary operations follow the same pattern. First, we have to define a
function upd_and that updates the memoization state: it is simply a wrapper that adds an
element to the right memoization table, and leaves the others untouched. Then, we define
the function mk_and as a simple call to the binary combinator. The crux here is the choice
of the functions Fx and Tx that specify the behavior of the combinator at the leaves of the
DAG.

Definition upd_and na nb res (st : state) :=
mk_state st
{| mand := set (na,nb) res st.(mand);

mor := st.(mor);
mxor := st.(mxor);
mneg := st.(mneg)

|}).

Definition mk_and :=
combinator
(fun x st => Some (F,st)) (* Fx *)
(fun x st => Some (x,st)) (* Tx *)
(fun a b st => get (a,b) st.(mand))
upd_and.

Then, the semantic correctness theorem for this operation is defined as follows.
Theorem mk_and_correct depth v0 (st: state) a b :

wf_st st ->
wf_expr st v0 a -> wf_expr st v0 b ->
∀ res st', mk_and depth a b st = Some (res, st') ->
wf_st st' /\ incr st st' /\
wf_expr st' v0 res /\
∀ env va vb,

value env st a va ->
value env st b vb ->
value env st' res (va && vb).

This statement proves three things under the hypotheses that the given state and BDDs
are well-formed: first, mk_and returns a well formed state. Second, it manipulates the state
monotonically (and, in particular, previously well-defined BDDs will still be well-defined
and keep their semantic values). Third, the returned BDD has the expected semantic
interpretations.

Canonicity

We can prove that this representation of BDDs is canonical: that is, well-formed equivalent
expressions are mapped to the same nodes.
Definition equiv st e1 e2 :=

∀ env v1 v2, value env st e1 v1 -> value env st e2 v2 -> v1 = v2.

10https://github.com/braibant/hash-consing-coq

197

https://github.com/braibant/hash-consing-coq

Chapter 9. Data Structures with Sharing in Coq

Lemma canonicity st v e1 e2 :
wf_st st -> wf_expr st v e1 -> wf_expr st v e2 ->
equiv st e1 e2 -> e1 = e2.

From this result, it follows that the (non-recursive) eqb function from Figure 9.3 is a
correct and complete characterization of semantic equivalence of expressions.

Lemma eqb_correct st v e1 e2 :
wf_st st -> wf_expr st v e1 -> wf_expr st v e2 ->
(eqb e1 e2 = true <-> equiv st e1 e2).

Garbage collection

In the above version of BDDs, we have not implemented garbage collection. That is, allo-
cated nodes are never destroyed, until the allocation map becomes unreachable as a whole.
Garbage collection could be added, e.g., using a stop and copy operation that preserve a
set of roots. This is beyond the scope of this paper.

9.3.2. The pure-shallow Approach

The previous implementation uses a deep embedding of the representation of the BDD in
memory via the graph map. This is a natural way to encode a directed acyclic graph, but, as
we saw, makes it difficult (if not unfeasible) to deal properly with termination. Therefore,
we would like to be able to reason about BDDs as if they formed an inductive type, while
keeping the ability to share sub-terms at runtime.
There is actually no need to look further than inductive types to do that. The standard

intuition about inductive types is that they define the smallest type closed under application
of constructors: the mental image that we get from that is a tree. Yet, there is nothing that
prevent us from using the system to share sub-terms.
In this section, we demonstrate that we can encode BDDs in Coq using a representation

that looks like binary decision trees, yet has runtime performances similar to the pure-
deep implementation (see Section 9.3.1), using explicit sharing. We present on Figure 9.10
our inductive definitions, and the associated allocation function mk_node. This has to be
compared with Figure 9.3: the difference mainly lies in the deletion of the graph map, and
the explicit recursive structure of the expr type.
The reader may wonder why we chose to define expr as two mutual inductive types expr

and hc_expr. Indeed, we explain in [BJM14, Section 8.3] that it is possible to inline hc_expr
inside the definition of expr. The mutual inductive solution is inspired by the hash-consing
library in OCaml by Conchon and Filliâtre [FC06]. This library makes a clear distinction
between hash-consing nodes (the equivalent of our hc_expr inductive) and the actual values
that are hash-consed. In Coq, this makes some inductive proofs a little more involved: we
need to use mutual induction on the two data-types.
The code of the hc_node function is subtle: a call to hc_node e bdd will perform a lookup

in the hash-consing map hmap: if the same expression was previously allocated, then we
return the old version; otherwise, we update the map hmap with a mapping from the ex-
pression to its hash-consed version. The lookup ensures that equal expressions (modulo the
comparison function used to index hmap) are mapped to the same hash-consed expression.
Then, mk_node l v h bdd will first test the identifiers of l and h for equality: if it is the
case, then there is no need to introduce a new node; otherwise, we perform a call to hc_node.
As an example, assume that x and y are expressions with different identifiers. The fol-

lowing code

198

9.3. Pure BDD Implementations

Inductive expr := | F | T | N : hc_expr -> var -> hc_expr -> expr
with hc_expr := HC : expr -> positive -> hc_expr.

(* Two extra definitions that are used as coercions in the
following code *)

Definition unhc (e : hc_expr) := let 'HC res _ := e in res.
Definition ident (e : hc_expr) := let 'HC _ res := e in res.

Definition eqb a b :=
match a,b with
| T,T | F,F => true
| N (HC _ id1) x (HC _ id2), N (HC _ id1') x' (HC _ id2') =>
(id1 =? id1') && (x =? x') && (id2 =? id2')

| _, _ => false
end.

Record hashcons_state := {hmap : expr ⇝ hc_expr; next : positive}.

Definition alloc u st :=
let r := HC u b.(next) in
(r, {| hmap := set u r b.(hmap); next := b.(next) + 1|}).

Definition hc_node (e : expr) (st : hashcons_state) :=
match get e st.(hmap) with
| Some x => (x, st)
| None => alloc e st
end.

Definition mk_node (l : hc_expr) (v : var) (h : hc_expr) st :=
if (ident l =? ident h) then (l,st) else hc_node (N l v h) st.

Figure 9.10: A shallow-embedding of sharing

let '(a,st) := mk_node x v y st in
let '(b,st) := mk_node x v y st in
let '(c,st) := mk_node a v' b st in ...

will make a, b and c point to the same memory location! However, if x and y were not
shared maximally, then neither are a, b nor c.

A word on memoization

There is no difference at all in the way we handle memoization in this implementation w.r.t.
Section 9.3.1. That is, we implement the same state record as before; and pass the same
memoization tables around.

A word on termination

It is now easier to define recursive functions that operate on BDDs by taking advantage
of the inductive definition of expr. We have to stress that easier is not easy because the
Coq termination checker requires that recursive calls are made on a structurally smaller
argument: there is no built-in support for recursive definitions with pairs of arguments that
are decreasing w.r.t. a lexicographic order. Therefore, we have to use nested fixpoints or
prove that the recursive calls are well-founded. In this section, we choose the former.

199

Chapter 9. Data Structures with Sharing in Coq

Re-implementing the combinator

We are now ready to describe the code of the implementation of the binary combinator
presented in Figure 9.11. The code is similar to the one in Figure 9.9 with a few key
differences: thanks to the inductive definition of expressions, we do not have to perform
lookups in the graph map and we do not use fuel anymore. This makes the combinator
function total; and we can get rid of the Maybe monad.

Canonicity

Again, we prove that this representation of BDDs is canonical: well-formed equivalent
expressions are mapped to the same nodes. Again, we have the corollary that the (non-
recursive) equality test from Figure 9.10 that inspects the (top-level) node identifiers is a
complete and correct characterization of semantic equivalence:

Definition equiv e1 e2 :=
∀ env v1 v2, value env e1 v1 -> value env e2 v2 -> v1 = v2.

Lemma eqb_correct st e1 e2 v :
wf_st st -> wf_expr st v e1 -> wf_expr st v e2 ->
(eqb e1 e2 = true <-> equiv e1 e2).

Comparison with the previous approach

The implementation presented in this section is derived from the previous one, with the
following improvements: the proofs are roughly 20% shorter; the performances are slightly
better when executing the code inside Coq (there is less administrative book-keeping to
do in our data structures); the functions that operates on BDDs are total. Furthermore,
it would probably be easier to implement garbage collection in this setting than in the
previous one, thanks to the simpler definition of the global state.
The situation is almost ideal for the equality test: we prove that the (non-recursive)

equality function that inspects the top-level identifiers of nodes is a correct and complete
characterization of semantics equivalence of BDD expressions. However, we have no way to
prove that it corresponds to physical equality. Actually, we cannot state within Coq that
it is never the case that two identical representations of the same term coexists, even if we
could argue at a meta-level that it is indeed not the case.

9.4. From Pure Data Structures to Persistent Data
Structures Via Extraction

In the previous section, we use a state monad to store information about hash-consing
and memoization. However, one can see that, even if these programming constructs use a
mutable state, they behave transparently with respect to the pure Coq definitions.
We have seen earlier (see Section 9.2.2) that if we abandon (efficient) executability inside

Coq, we can express new idioms. In the following, we implement the BDD library in Coq as if
manipulating decision trees with neither sharing, nor hash-consing tables, nor memoization
tables, then add the hash-consing and memoization code by using special features of the
extraction mechanism to remap some constants arbitrarily to custom OCaml code.

200

9.4. From Pure Data Structures to Persistent Data Structures Via Extraction

Section combinator.
Variable fx : hc_expr -> state -> hc_expr * state.
Variable tx : hc_expr -> state -> hc_expr * state.
Variable memo_get : positive -> positive -> state -> option (hc_expr).
Variable memo_update :
positive -> positive -> hc_expr -> state -> state.

Fixpoint combinator : hc_expr -> hc_expr -> state -> hc_expr * state :=
fun a =>
fix combinator_rec b st :=
match unhc a, unhc b with
| F, _ => fx b st
| _, F => fx a st
| T, _ => tx b st
| _, T => tx a st
| N l1 v1 h1, N l2 v2 h2 =>

let ida := ident a in
let idb := ident b in
match memo_get ida idb st with
| Some p => (p,st)
| None =>

let '(res, st) :=
match Pos.compare v1 v2 with
| Eq =>

let '(x, st) := combinator l1 l2 st in
let '(y, st) := combinator h1 h2 st in
mk_node x v1 y st

| Gt =>
let '(x, st) := combinator l1 b st in
let '(y, st) := combinator h1 b st in
mk_node x v1 y st

| Lt =>
let '(x, st) := combinator_rec l2 st in
let '(y, st) := combinator_rec h2 st in
mk_node x v2 y st

end
in
let '(_, st) := memo_update ida idb res st in
(res, st)

end
end.

End combinator.

Figure 9.11: Shallow combinator for binary operations

201

Chapter 9. Data Structures with Sharing in Coq

Inductive bdd: Type :=
| T | F | N : var -> bdd -> bdd -> bdd.

Extract Inductive bdd =>
"bdd" ["hT" "hF" "hN"] "bdd_match".

(a) Coq side

type bdd =
| T of tag | F of tag | N of positive * bdd * bdd * tag

module HCbdd = Hashcons.Make(...)

let hT = HCbdd.hashcons (T Weakhtbl.dummy_tag)
let hF = HCbdd.hashcons (F Weakhtbl.dummy_tag)
let hN (v, t, f) = HCbdd.hashcons (N (v, t, f, Weakhtbl.dummy_tag))

let bdd_match fT fF fN t =
match t with
| T _ -> fT ()
| F _ -> fF ()
| N (v, t, f, _) -> fN v t f

(b) OCaml side

Figure 9.12: Implementing BDDs in Coq, extracting them using smart constructors

9.4.1. The smart Approach

More precisely, we define our BDDs as binary decision trees (see top of Figure 9.12), and
implement operations in Coq on this simple data structure. Then, we tell Coq to extract
the bdd inductive type to a custom bdd OCaml type (see bottom left of Figure 9.12) and to
extract constructors into smart constructors that maintain the maximal sharing property.
The type defined in OCaml is identical to the Coq one, except that it carries one extra field of
type tag, morally containing the associated unique identifier. The smart constructors make
use of the hash-consing library used in Why3, a recent version of a library by Conchon and
Filliâtre [FC06]. It defines the Hashcons.Make functor, that we instantiate. The generated
module provides a HCbdd.hashcons function that returns a unique hash-consed representative
for the parameter.
The reader may notice that we choose to name bdd in Coq what is clearly a representation

of a binary decision tree, and which corresponds to what was previously named expr. We
believe that this particular choice of name makes sense if we consider values of type bdd to
represent Boolean functions.

Discussion: the status of the equality test

In Coq, we define the obvious recursive function bdd_eqb of type bdd -> bdd -> bool, that
decides structural equality of BDDs. Then, we extract this function into OCaml’s physical
equality:

Fixpoint bdd_eqb (b1 b2:bdd): bool :=
match b1, b2 with
| T, T | F, F => true
| N v1 b1t b1f, N v2 b2t b2f =>
Pos.eqb v1 v2 && bdd_eqb b1t b2t && bdd_eqb b1f b2f

202

9.4. From Pure Data Structures to Persistent Data Structures Via Extraction

| _, _ => false
end.

Extract Inlined Constant bdd_eqb => "(==)".

From a meta-level perspective, we argue that the two are equivalent thanks to the physical
unicity of hash-consed structures, provided that all values are constructed using our smart-
constructors, which is the case if we create all nodes from code extracted from Coq (of
course, handwritten OCaml code may break this invariant). The key point here is that the
way we build terms enforces the fact that the BDDs they build are maximally shared.

Keeping the BDD reduced.

One could be tempted to put in the OCaml code of the smart constructor hN a test that
would enforce that BDDs are reduced. That is, it would not build a node if its two children
were identical.
let hN (v,t,f) =

if t == f then t
else HCbdd.hashcons (N (v, t, f, Weakhtbl.dummy_tag))

To see the problem with this idea, consider the following Coq code.
match N (v,T,T) with
| T => false
| N (_,_,_) => true
end

In Coq, the above expression reduces to true while the extracted version would reduce to
false. Therefore, this idea is wrong: avoiding the node construction makes subsequent case
analyses behave inconsistently between Coq and OCaml.
In the end, the correct way to implement reduction is to use the following helper function,

written in Coq, that builds a node only when necessary.
Definition N_check (v : var) (bt bf : bdd) : bdd :=

if eqb bt bf then bt else N v bt bf.

Note that the user is forced to use this function instead of using the N constructor11. Failing
to do so will result in code that is correct, but does not build reduced binary decision
diagrams. More precisely, extracting eqb to == would make it possible to prove that BDD
operations are semantically correct, but this would make diagrams non-canonical: well-
formed expressions could be represented by several different nodes.

Implementing the combinator

The last ingredient needed to transform a decision tree library into a BDD library is mem-
oization. We use the same kind of ideas: we define our functions as if not memoized, but
we use a special well-founded fixpoint combinator, that we extract to a memoizing fixpoint
combinator. The details can be seen on Figure 9.13: we declare an abstract type class
memoizer of types A such that we know how to memoize functions of type ∀ x : A, P x.
This is extracted in OCaml to the type of polymorphic fixpoint combinators, with an extra
technical int parameter used to specify the initial size of the used hash map. In Coq, we
then define a memoizing combinator memo and a memoizing fixpoint combinator memo_rec
as if they were not using memoization, but we ask the extraction mechanism to map them
11Still, the N constructor that occurs in the definition N_check must be extracted using a smart-constructor.

203

Chapter 9. Data Structures with Sharing in Coq

Parameter memoizer : ∀ A : Type, Type.
Existing Class memoizer.
Extract Constant memoizer "'key" => "'key Helpers_common.memoizer".

Definition memo [A] {H : memoizer A} [P] := @id (∀ x : A, P x).
Extract Inlined Constant memo => "Helpers_common.memo".

Definition memo_rec [A] {H : memoizer A} := @Coq.Wf.Fix A.
Extract Inlined Constant memo_rec => "Helpers_common.memo_rec".

(a) Coq side

type 'key memoizer =
{ memo : 'a. int -> (('key -> 'a) -> ('key -> 'a)) -> ('key -> 'a) }

let memo m f = m.memo 5 (fun _ x -> f x)

let memo_rec m f = m.memo 5 (fun frec x -> f x (fun y _ -> frec y))

(b) OCaml side

Figure 9.13: Memoizing combinators

to special OCaml functions, that make use of the type class instance given as parameter.
These functions are observationally equivalent to the Coq ones, provided that the type class
instance is correct, and that the memoized function is pure.
It is worth noting that directly exposing the type 'key memoizer in Coq would be unsound,

because this allows to use its instances in a non-terminating manner: the memo_rec wrapper
makes sure the recursive calls are well-founded. Moreover, it is important to understand
that we have not axiomatized these combinators. Instead, we give real implementations,
semantically equivalent to their OCaml counterparts. This is important, because it then
becomes clear that we do not introduce any logical inconsistencies in Coq, and these terms
keep a computational contents which could be very useful in proofs.
This part of the code is modular, and can be used to memoize functions of any domain.

It is up to the user to give instances of the memoizer type class: to do so, he can provide
dedicated code, as shown in Figure 9.14 for the type N of binary natural integers, using
simple hash tables. Alternatively, for the bdd type, our type class instance is just an OCaml
wrapper around the hash-consing library built-in memoization mechanisms.
Again, we use the example of the bdd_and operation, shown in Figure 9.15. As in Fig-

ure 9.11, we define this function using two nested fixpoints, in order to handle the special
recursion scheme of this function (decreasing on one of its two parameters). The definition
of bdd_and uses memo_rec twice, in a nested fashion.

Garbage collection

The strategy we use in Section 9.3.2 for garbage collection is very naive: we kept everything
alive, forbidding any garbage collection. Here, the hash-consing library we use allows the
garbage collector to reclaim any node that is not referenced by the program, by using
suitable weak hash tables. Moreover, it reclaims any memoized value that is associated with
a dead key (we will not give more details here and refer the reader to [FC06]). Although
it avoids memory leaks, this strategy does not necessarily give the best performances (see
Section 9.5). We believe the changes necessary to implement a new strategy are small, and

204

9.4. From Pure Data Structures to Persistent Data Structures Via Extraction

Parameter memoizer_N : memoizer N.
Existing Instance memoizer_N.
Extract Inlined Constant memoizer_N => "Helpers_common.memoizer_N".

(a) Coq side

module NHT =
Hashtbl.Make (struct
type t = coq_N
let equal = (=)
let hash = N.to_int

end)

let memoizer_N =
{ memo = fun n f ->

let h = NHT.create n in
let rec aux x =

try NHT.find h x with Not_found ->
let r = f aux x in NHT.replace h x r; r

in aux }

(b) OCaml side

Figure 9.14: An instance of memoizer for Coq.Numbers.BinNums.N

do not involve rewriting the proofs: only OCaml code is involved.
It is important to note that we have to memoize the functions one argument at a time

(keeping them curried). Indeed, one should be tempted to memoize a function bdd * bdd -> bdd.
This is not a good idea, since we use weak hash tables for the memoization: in this case,
the pairs containing the arguments are no longer accessible after the function call, so that
the garbage collector is going to collect most of the memoized data at each cycle. Using
our pattern, we make sure a memoized datum is not reclaimed as long as both parameters
are still alive in memory. (Note that if we choose to use regular hash tables instead of weak
ones, this argument does not stand anymore, but the program has different performance
and memory consumption profiles.)

Discussion: comparison with previous approaches

In this instance of our BDD library, all Coq definitions are kept simple and proofs are
straightforward. That is, we can prove semantic correctness of all operations directly using
structural induction on decision trees and there is no state holding structures. There is a
nice separation between the hash-consing and memoization code, that is generic, written in
OCaml and not proved and the BDD code, mostly written and proved in Coq.
We do not need to use monads in the Coq code, so that the interface of the BDD library

remains modular and easy to use. Moreover, it is straightforward to implement garbage
collection strategies in order to avoid memory leaks.

9.4.2. The smart+uid Approach

The previous smart approach totally hides the unique identifiers from the Coq code. Yet,
exposing these unique identifiers may be useful at times.
Consider the following use case: from a BDD B we would like to build an equivalent

propositional logic formula of linear size, for instance for feeding into a satisfiability mod-

205

Chapter 9. Data Structures with Sharing in Coq

Definition bdd_and : bdd -> bdd -> bdd.
refine

(memo_rec (well_founded_ltof _ bdd_size) (fun x =>
match x with
| T => fun _ y => y
| F => fun _ _ => F
| N xv xt xf => fun recx =>

memo_rec (well_founded_ltof _ bdd_size) (fun y =>
match y with
| T => fun _ => x
| F => fun _ => F
| N yv yt yf => fun recy =>

match Pos.compare xv yv with
| Eq => N_check xv (recx xt _ yt) (recx xf _ yf)
| Lt => N_check yv (recy yt _) (recy yf _)
| Gt => N_check xv (recx xt _ y) (recx xf _ y)
end

end)
end));

unfold ltof; simpl; clear; abstract omega.
Defined.

Figure 9.15: Conjunction on bdds

ulo theory solver. In order to avoid an exponential blow-up, each shared sub-tree should
generate one single sub-formula, used in a “let” binder so that its value can be used in mul-
tiple occurrences. The obvious way to implement such a transformation is to first detect
which sub-trees are shared, using a set of shared subtrees seen so far, then to perform the
transformation, using a table of mappings from subtrees to bound variables.
It seems therefore highly desirable to be able to build sets and maps over our hash-consed

type. Generic functional sets and maps are usually implemented using balanced trees over
a totally ordered data type; for efficiency, the comparison function should be very fast.
An obvious choice would be to expose the unique identifiers to the Coq code (through
a function bdd -> uid), or at least the total order that they induce (through a function
bdd -> bdd -> comparison).
Unfortunately, doing so without precautions can lead to unsoundness. Consider a program

where, in succession, two nodes A and B are allocated, then a node A′ isomorphic to A is
created; let uA < uB , uA′ be the successive unique identifiers. If A is collected between the
allocations of B and A′, then A′ will be allocated, with uA′ > uB . Yet, A′ and A are, from
the point of view of the Coq code, identical; thus uA′ = uA, yielding an inconsistency.
The workaround is to use a normal hash table, as opposed to a weak hash table, which

prevents the collection of unreachable nodes. Then, two identical nodes created within the
same execution are necessarily physically equal and thus share the same identifier.
One difficulty remains. Gallina is a purely functional language; the evaluation of a given

term always yields the same result, and one expects the same property to extend to the
extracted OCaml program, as long as it does not interact with the external world (e.g.,
reading from files). Yet, this is not necessarily the case if one exposes the unique identifiers.
Consider a program P1, such that the extracted OCaml code allocates two nodes A and B
in this order. If P1 is run stand-alone, then uA < uB . Yet, if another program P2 allocating
B′ isomorphic to B is first run, and B′ is not collected, then B′ is the same as B and
uB = uB′ < uA.
It seems questionable that the result of an evaluation should depend on whether some

other (unrelated) evaluation has taken place, if only because it makes debugging difficult.

206

9.5. Comparison

12

9.5. Comparison
In this section, we compare our design patterns on various aspects:

Executability inside Coq

The pure-deep and pure-shallow implementations can be executed inside Coq, and
have decent performances. The smart and physEq approaches can also be executed inside
Coq, but have dreadful performance because they do not exploit sharing. The smart+uid
approach cannot be executed inside Coq.

Trust in the extracted code

Unsurprisingly, the smart and the smart+uid approaches yield code that is harder to
trust, while the pure-deep and pure-shallow approaches leave the extracted code pris-
tine. The physEq approach lies in between: it consists in a small tweak in extraction, that
is easier to trust than the hash-consing library of smart and smart+uid.

Proof

From a proof-effort perspective, the smart approach is by far the simplest. The smart+uid
approach involves the burden of dealing with axioms. The physEq approach requires prov-
ing that the result of a physical equality test does not change the result of the computation.
Apart from that, the physEq term is convertible to a very simple term, so that the proofs
are not affected by its use. By comparison, the pure-deep and pure-shallow approaches
required considerably more proof-engineering in order to check the validity of invariants on
the global state. Note however that our proof arguments are much simpler in the latter one.

Garbage collection

Implementing (and proving correct) garbage collection for the pure-deep or pure-shallow
approaches would require a substantial amount of work. By contrast, the smart and phy-
sEq approaches make it possible to use OCaml’s garbage collector to reclaim unreachable
nodes “for free”.

Operations

The physEq approach cannot implement full hash-consing, so that we were not able to
implement BDD algorithms. As we have shown, binary operations can be handled with a
single parametric combinator. All our implementations (except physEq) use such a combi-
nator to implement conjunction, disjunction, exclusive-or and so on. There is little work to
12One could argue that, with certified programs in the Coq fashion, there is no need to debug: each function

or module comes with a proof of its correctness, which compositionally entail the correctness of the whole
program. Yet, commonly one only proves the results to be correct, not necessarily optimal, and one proves
very seldom that the computation has the expected complexity. Furthermore, some computations are
split between an untrusted solving procedure, and a trusted checker; a failed check entails having to
debug the untrusted procedure, which may be hard if behaviors are hard to reproduce independently of
the rest of program. These two situations appear in Verasco: the only proofs concern soundness, and no
formal guarantees are given about completeness; and some parts, like the polyhedral domain, are written
in untrusted OCaml code.

207

Chapter 9. Data Structures with Sharing in Coq

do to add support for any binary operation we may have overlooked. The situation is more
complicated when it comes to ternary operations (such as the if-then-else Boolean opera-
tion). Implementing it using the smart approach, and proving it correct requires around
80 lines of code. It would require a non-trivial amount of work to implement it using our
pure-deep or pure-shallow approaches, and we have not conducted this experiment yet.
Other operations that are relevant in a BDD library are function composition and quan-
tification. We have yet to implement these in any of our libraries. Quantification over one
variable can be defined as a structural recursion over one BDDs. As such, we think it can
be easily defined in all our frameworks. Unary composition (that is, substitution of one
variable with another Boolean function) can be defined as a structural recursion over two
BDDs. As a consequence, implementing it in the smart framework seems simple. However,
this particular recursion scheme does not fit the combinator of the pure-deep or pure-
shallow approaches, and some additional work would be needed in order to implement
it using those approaches. Moreover, a non-negligible amount of work would be needed to
support variable arity composition and quantification in all libraries.

Performances of the Extracted Code

We evaluate the performances of the OCaml code that is extracted from our “pure” (see
Section 9.3) and “impure” (see Section 9.4) libraries, and we pit them against a reference
library implemented in OCaml (available from J.C. Filliâtre’s web page). No BDD library
was implemented using physEq, so that we won’t include it in the comparison. This refer-
ence library does not keep the memoization table alive from one execution of an operation
to another: for instance, each time the and function is called, a new memoization hash ta-
ble is allocated. Therefore, to make up for a fair benchmark with our implementations, we
modified this reference library to use a memoization strategy closer to ours. This alternative
reference implementation is designed “reference (conservative)” in what follows.
Then, this evaluation, we use two standard benchmarks [VGLPAK00]. The first one is

Urquhart’s formula U(n) defined by

U(n) ≜ x1 ⇐⇒ (x2 ⇐⇒ . . . (xn ⇐⇒ (x1 ⇐⇒ . . . (xn−1 ⇐⇒ xn))))

The second kind of formula states the pigeonhole principle P (n) for n+ 1 pigeons: that is,
if there is n+ 1 pigeons in n pigeonholes, then there is at least one hole that contains two
pigeons. The plots of the execution time required to check that these formulas are tautology
are given in Figure 9.16.
First, we remark that the reference implementation that we use is (almost always13)

4 times faster than our best implementation smart. There is no significant difference
in execution time between the reference implementation with the conservative memoization
strategy and the reference implementation. We have not conducted a detailed measurement
of the memory consumption14, though, and the memory consumption profile is likely to be
different between the two.
Then, our smart implementation is roughly 4 times faster than the pure-deep one:

interestingly enough this value is consistent over our benchmark, while we could have ex-
pected logarithmic factors to show up. Indeed, recall that the pure implementation uses
functional finite maps, while the smart one uses OCaml hash-maps.
13This is not necessarily true for small formulas due to differences in the start-up costs of these libraries.
14These particular benchmarks were run on a computer with 1 TB of ram, which made it possible to avoid

swapping during our experiments. Indeed, memory usage is the limiting factor on bigger instances of
the tests.

208

9.5. Comparison

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Ti
m

e
 (

s)

U(n)

Pure
Smart

Reference (conservative)
Reference

(a) Urquhart’s formula

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 6 8 10 12 14 16

Ti
m

e
 (

s)

P(n)

Pure
Smart

Reference (conservative)
Reference

(b) Pigeonhole principle

Figure 9.16: Execution time for the BDD benchmarks

Also, we have run the same benchmark on our pure-shallow implementation, and the
resulting plot is close to the pure-deep plot: for small instances, the difference of execution
times are of about 10%. For our largest instance of the pigeonholes problem, we observe
that the pure-shallow is faster by about 30%. We do not delve too much on this result:
we wonder for instance to what extent changing the implementation of finite maps that we
use could result in similar differences of performances.
Primary investigation shows that the main performance difference between the reference

implementation and our smart approach comes from the use of the generic hash-consing
library: the reference library uses a specialized hash-consing system, much faster than the
generic library we use. Similarly, the difference between the smart and the pure-shallow
seems to be the use of AVL trees to represent dictionaries.
We did not investigate much the memory behavior. Our simple experiments show that

it depends on the benchmark we consider. The bottom line is that all our approaches
consume less than twice as much memory as the reference implementation, conservative
version. Moreover, we observe that pure-shallow consumes 10%-20% less memory than
pure-deep. Concerning the smart approach, it seems like our curried memoization scheme
creates a lot of very small hash tables in the OCaml heap, which is not the optimized use
case of OCaml hash tables. Thus, there might be room for improvement here.

209

Chapter 9. Data Structures with Sharing in Coq

9.6. Related Work

Purely functional implementations of BDDs

Bradley and Davies [BD98] implemented lazy BDDs in Haskell in a manner similar to our
“pure-shallow” approach. In their approaches, not only are BDDs maximally shared, they
are also lazily evaluated “on demand”. We did not investigate this possibility.

Imperative features inside the specification language

An obvious solution to implement and reason about imperative algorithms is to have these
imperative features present in the modeling language of the prover. Some provers directly
target high-level programming languages with data structures, references and imperatives
features: an example is KeY [BHS07], which targets a large subset of Java. While such fea-
tures are not available in Coq, there are two conceptual difficulties with this approach that
would have made it impractical in our case-studies. First, BDD algorithms implemented us-
ing hash-consing are functional in a high-level view: BDD operations are very clearly given
functionally, by induction; but also because hash-consing is suitable only for immutable
structures15. It therefore seems strange to have to program them in an imperative language,
furthermore one that complicates common functional idioms (e.g., pattern-matching). Sec-
ond, the meta-theory for such languages is typically huge, with intricate proof rules having
to deal with mutable data, references, late binding etc. It is not obvious how much we can
trust the proof system with respect to the semantics of the language.
A second option is to add to an existing functional specification language certain imper-

ative traits as monads, then modify the extraction function from the specification language
to the target language so as to translate monadic operations into imperative calls, as has
been done for Isabelle/HOL [BKH+08]; this approach has been used to verify a BDD pack-
age [GS12]. Special proof idioms have to be used for monadic programs, in addition to the
general difficulty of programming in monadic style (see Section 9.2.2). To the best of our
knowledge, this approach has not been investigated in Coq.
A third option is to integrate into the specification language some essentially imperative

data structures (e.g., mutable arrays, from which hash tables can be implemented), but
present them in a functional fashion (e.g., an update to a mutable array is treated as re-
turning a new array, same as the previous except for the updated location). The imperative
features are then implemented efficiently for evaluation of expressions inside the prover,
and are mapped to native imperative features of the target language during extraction. For
instance, an experimental version of Coq exists, with native integers and arrays [AGST10].
Again, all difficulties with monads (see Section 9.2.2) apply, plus there is the problem of
running a nonstandard version of Coq.
A fourth option is to deeply embed a subset of an imperative language into Coq: the

programs of this imperative language are given a semantics inside Coq, and correctness
properties are proved with respect to this semantics. This idea is discussed by Vafeiadis
[Vaf13], but, as he remarks, this largely precludes the use of regular proof tactics: we have to
develop proof steps specific to the language being embedded, and prove these steps correct
with respect to the semantics.

15Or at least for structures behaving as though they were immutable; for instance, we can perform hash-
consing on a structure if the mutable information in the structure is just used for caching and does not
affect the hashcode.

210

9.6. Related Work

Verification of BDD algorithms in Coq

Verma et al. [VGLPAK00, VGL00] implemented and proved correct in Coq a BDD library
featuring efficient negation and disjunction; other operations like conjunction, implication
and so on are implemented as derived operations. The BDDs produced are reduced and
shared.
As we said, we chose to implement a fresh one because the code associated to their

paper did not age well w.r.t. the evolution of Coq. Beside the fact that they investigated
garbage collection, there is no conceptual difference between their library and our pure-
deep approach.

Verification of BDD algorithms in other theorem provers

In Isabelle/HOL, Ortner and Schirmer [OS05] verified the implementation of a normalization
algorithm for binary decision diagrams. That is, their algorithm takes as input a BDD, and
outputs the corresponding ROBDD. Their formalization is built on the Burstall-Bornat
memory model: they build one heap of type ref ⇝ value for each component of a BDD
node, with ref the abstract type of memory addresses. Using a split-heap model makes it
easier to reason about heap-allocated data structures in tools such as Why3. We believe
however, that our formalization is more direct than theirs, and more suitable for efficient
implementations in Coq.
Boyer and Hunt [BHJ06] developed an extension of ACL2 that uses hash-consing to give

canonical representatives to ACL2 objects. This makes it possible to memoize some ACL2
user defined functions. As a case study, they implemented a BDD library in ACL2. Remark
that this implementation is based on the fact that ACL2 exposes hash-consing primitives
and the associated reasoning principles to the user. It is unclear to what extent these
features could be added to the Coq proof assistant.

Hash-consing in the execution language

Jean Goubault-Larrecq’s HimML programming language [Gou94a, Gou94b] is an extension
of core Standard ML with primitive finite set and map data types with a run-time system
designed around the concept of maximal sharing, or systematic hash-consing.

211

Chapter 10
Conclusions

10.1. Achievements

In this thesis, we described the design, implementation and formal verification of Verasco, a
static analyzer based on abstract interpretation using the Coq proof assistant, available at
http://compcert.inria.fr/verasco/. This static analyzer is able to establish the absence of
erroneous behavior in programs written in a large subset of C99. Verasco shares the formal
semantics of its input language with the CompCert formally verified compiler, and hence
the guarantees it provides provably extends to the assembly code generated by CompCert.
Our static analyzer enjoys a modular architecture with well-specified interfaces between
its different components. It includes an abstract interpreter operating on the source code,
a state abstract domain handling the memory structure of the program, and a complex
hierarchy of numerical abstract domains able to infer complex numerical properties. The
numerical hierarchy contains a generic abstract domain functor for handling the bounded-
ness of integers, a symbolic abstract domain, the interval and congruence non-relational
abstract domains, the Octagon abstract domain and a third-party Polyhedron abstract do-
main. This combination of numerical domains builds on a cooperation mechanism, inspired
from that of Astrée, which makes possible the exchange of information between domains
without breaking their modularity.
We presented several contributions that could be reused independently of the formal

verification of a static analyzer: we developed novel techniques to prove properties of our
specially crafted Hoare logic; we designed new algorithms for the octagon abstract domain,
enabling the static analyzer to operate on sparse representations of abstract environments;
and we investigated several methods to implement hash-consing and memoization in pro-
grams written using the Coq proof assistant.

10.1.1. Formalization Effort

The full Coq development of Verasco is about 47000 lines long, excluding blanks and com-
ments. An additional 6000 lines of Caml implement the operations over polyhedra that are
validated a posteriori (see the work by Fouilhé et al. [FMP13, FB14]). The parts reused
from CompCert (e.g., syntax and semantics of C#minor) and Flocq are not counted. The
following table summarizes the relative sizes of the various components of Verasco:

213

http://compcert.inria.fr/verasco/

Chapter 10. Conclusions

Code & spec. Proofs Total
Abstract domain interfaces 1234 143 1377 3%
Abstract interpreter 1667 1631 3298 7%
State abstraction (from [Lap15]) 4396 5793 10189 22%
Numerical domains 12336 14459 26795 57%

Machine arithmetic functor 912 1536 2448 5%
Abstract domain combinators 715 346 1061 2%
Intervals 1698 2493 4191 9%
Congruences (from [Lap15]) 682 1003 1685 4%
Octagons and linearization 1349 2815 4164 9%
Polyhedra (from [FMP13, FB14]) 5947 4258 10205 22%
Symbolic equalities 1033 2008 3041 7%

Miscellaneous libraries 2946 1909 4855 10%
Total 22579 23935 46514

The largest parts of the development include the state abstract domain, owing to the
complexity of the memory abstraction, and the numerical abstract domain hierarchy, with
many abstract domains, some of which containing difficult proofs about integer and floating-
point arithmetic.
The difficulty of the development of such a large formally verified program not only resides

in the complexity of the algorithms and their proofs: several times, we faced software
engineering issues, such as the need for large refactorings because of wrong early design
decisions or for staying compatible with newer CompCert and Flocq releases.

10.1.2. Expected Impact

Even if the basic building blocks of an industrial-scale static analyzer such as Astrée relies on
strong mathematical foundations, their implementation implies, in practice, some informal
reasoning. In this thesis, we give formal specifications and proofs to the various components
of the static analyzer. Therefore, we “filled the gap” between the formal description of an
abstract domain in an academic paper and its implementation. Hence, we hope that this
work will be useful to developers of unverified static analyzers, by giving them an example
of formal specification of abstract domains in the context of a real static analyzer.
By demonstrating that formal verification tools are mature enough to develop realis-

tic formal verification tools themselves, we consider this work, together with other recent
achievements in the domain, as a new milestone. Not only we showed that static analysis
techniques can be formalized, but we also proved that the overhead of their formal verifica-
tion in the context of realistic, complex tools is no longer necessarily prohibitive in terms
of implementation and formalization effort.

10.2. Perspectives and Future Work

Verasco is still an ongoing experiment: much work is still needed before scaling up to
analyzing real, large, industrial software. We now outline possible future improvements for
Verasco.

214

10.2. Perspectives and Future Work

10.2.1. Using New Abstract Domains and Analysis Techniques

Trace partitioning. Trace partitioning [RM07] is an abstract interpretation technique
consisting in partitioning the approximated set of states at a given program location de-
pending on the trace that led to this state. This technique is used in static analyzers in order
to improve the precision of the analysis in many cases. It supersedes loop unrolling, and can
be used for many other purposes. In Verasco, trace partitioning should be implemented as
an additional abstraction layer between the state abstract domain and the abstract iterator
or even as part of the latter. A significant gain in precision in Verasco can be expected from
using trace partitioning, at the cost of a potentially slower analysis.

Other numerical abstract domains. The numerical abstract domain hierarchy of Ve-
rasco can be extended with new abstract domains. If we follow the example of Astrée, we
might be interested in implementing Boolean partitioning techniques, or an abstract domain
dedicated to linear filters [Fer04] or arithmetic-geometric progressions [Fer05]. All these ad-
ditions would improve the precision of the analysis, potentially decreasing its performance.
On the other hand, we may want to implement other precision versus performance tradeoffs
in linear relational abstract domains, such as Pentagons [LF08b] or Subpolyhedra [LL09].

Supporting Recursion and Dynamic memory allocation. Dynamic memory allocation
and recursion are features of C pervasively used in non-critical code. Therefore, it seems
important to support them in order to analyze a larger class of programs. However, these two
features create difficult challenges in sound static analysis. Basic support is already difficult,
but precise analysis of pointer-based dynamically allocated data structures demands more
complex techniques such as shape analysis.

10.2.2. Improving Performance

We did preliminary experiments of testing Verasco on real programs. Specifically, we ran
Verasco on several short unit tests designed to check that its abstract domains are indeed
able to infer the desired properties. Additionally, we tested Verasco on numerical simu-
lation programs using floating-point numbers, taken for the CompCert benchmark suite,
called nbody.c and almabench.c. We also ran Verasco on cryptographic routines on elliptic
curves, taken from the NaCl library. This latter benchmark is called smult.c. Here are the
computation times needed by Verasco to prove the absence of erroneous behavior in these
programs with our Intel Xeon E3-1240 at 3.4GHz (the memory consumption during the
analysis, in all our tests cases, is negligible):

Program Size (lines of C code) Analysis time (seconds)
smult.c 347 11.8
nbody.c 176 6.3
almabench.c 362 5.3

These results are encouraging, first because they represent a significant improvement
compared to previous versions of Verasco [JLB+15], and second because they show that
analyses times for small programs are reasonable. Nevertheless, a lot of progress still needs
to be done in order to approach the performance of industrial-strength static analyzers.

215

Chapter 10. Conclusions

Summarizing arrays. The state abstract domain needs improvement to make it able to
compute summaries of arrays instead of representing each cell independently. A simple
method is to represent the whole arrays using one non-relational abstract value, on which
we perform weak updates, but better method exists, involving array segmentation [CCL11].

Variable packing. Relational abstract domains, such as Octagons or Polyhedra, always
have a higher computational cost than non-relational abstract domains, even with our sparse
representations for Octagons. Therefore, they cannot be directly used in programs contain-
ing many variables. A technique called variable packing is often used in order to use the
relational abstract domains only on specific packs of variables, thus limiting the high compu-
tational cost. This packing technique can be implemented in Verasco, but it would require
some tuning to implement good heuristics to determine the contents of these packs.

Limiting the inefficiencies of Coq as a programming language. Implementing a
static analyzer in Coq has many implications, leading to radical choices. Examples in-
clude the representation of integers as lists of bits in Coq, which is very inefficient, and
the implementation of floating-point numbers using these inefficient integers to represent
mantissas and exponents. Another example is the absence of side effects, and the lack of
some data structures like arrays (which would be useful for implementing Octagons, typi-
cally). Some of these limitations of Coq as a programming language have been mitigated:
we circumvent the absence of a physical equality operator (see Section 9.1), and we replace,
at extraction time, slow Coq integers with a fast implementation of unbounded integers
arithmetic for most integer operations. Others limitations still need work: we need to use
a fast implementation of floating-point arithmetic1, and improve the data structures used
in the different components of the analyzer.
On a more general note, we wonder if the use of a deductive verification tool such as

Why3 or CFML instead of Coq could ease the implementation by removing the limitations
of Coq as a programming language. However, using Coq as a specification language is very
convenient (and necessary due to the dependence over CompCert), and its logical power
is essential for Verasco. Therefore, we wonder whether a methodology could be designed
to get the best of both worlds, without endangering the formal guarantees provided by
Verasco. As an example, this would make us able to use the results of the VOCaL ANR
project [VOC] aiming at formally verifying algorithms and data structures.

Improving algorithms and removing redundant computations. Some algorithms used
in Verasco are not optimal in terms of efficiency. For example, every numerical expression
is analyzed at least twice: the first time, Verasco determines whether it could have an erro-
neous behavior, and the second time it does the actual analysis (e.g., abstract assignment,
backward analysis for tests...). Similarly, when there are several pointer references in an
expression (or array accesses, which is equivalent in C), the state abstract domain considers
all possible combinations of memory references for each of these accesses. This can lead
to a combinatorial explosion in the case of expressions with several memory accesses that
cannot be statically resolved. Finally, when analyzing nested loops, the fixpoint iteration
for the inner loop starts from scratch at every iteration of the outer loop. The inferred
invariant at the first iteration of the outer loop could be reused as starting point for the
inner loop iteration, leading to a shorter inner loop iteration.

1Using the host machine implementation of floating-point numbers is not as easy as it seems, because we
need several different rounding modes, and many C compilers are not, in fact, fully compliant to the
IEEE-754 standard [BJLM15].

216

10.2. Perspectives and Future Work

All these inefficiencies could be mitigated by implementing better algorithms in Verasco.
We do not foresee fundamental difficulties in doing so: this is mostly a matter of work.

10.2.3. Leveraging the Results of the Analyses
Currently, the result of the analysis that is guaranteed to be correct is just a Boolean: if
the Boolean is true (i.e., there is no alarm), then the program has no erroneous behavior.
Otherwise, no guarantee is given.
This is unfortunate, because Verasco actually computes much more about the program.

Indeed, we could, without much additional work, return a certified annotated version of the
program with the result of the analysis, including, e.g., bounds for numerical variables, or
points-to information for pointers. This information could be reused by other analyzers or
even advanced compiler optimizations.
Actually, there is no need for Verasco to prove the absence of undefined behavior in order

to return such an annotated version of the program: with small modifications to Verasco,
we could make it return valuable static analysis results even if it raises alarms. These results
would be valid, provided that the input program does not have an erroneous behavior (or
a behavior unsupported by Verasco, such as an external function call), just like any static
analysis included in a modern compiler does.
Another kind of information that could be returned by Verasco is verified information

about the trace generated by the program. In particular, it would be easy to change the
abstract interpreter so that it returns an interval for each global volatile variable approxi-
mating the set of values written to this variable.

10.2.4. Experimenting Verasco on Real Code
Perhaps the most important ingredient missing to Verasco when compared to an industrial-
scale static analyzer such as Astrée is a long phase of experiments on real industrial code
for tuning the analyzers and adding to it the many small but necessary features needed
to make it usable in a realistic context. This phase is very time-consuming, and tends to
specialize the analyzer towards specific applications.

217

Bibliography

[AB07] Andrew W. Appel and Sandrine Blazy. Separation logic for small-step Cmi-
nor. In Theorem Proving in Higher Order Logics (TPHOL), volume 4732 of
LNCS, pages 5–21. Springer, 2007. [Cited on pages 83 and 94.]

[Agd] The Agda language. http://wiki.portal.chalmers.se/agda/. [Cited on
page 18.]

[AGST10] Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry.
Extending Coq with imperative features and its application to SAT verifica-
tion. In Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages
83–98. Springer, 2010. [Cited on page 210.]

[Alt] The Alt-Ergo SMT solver. http://alt-ergo.lri.fr/. [Cited on page 16.]

[AM01] Andrew W Appel and David McAllester. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems (TOPLAS), 23(5):657–683, 2001. [Cited on page 94.]

[App14] Andrew W Appel. Program logics for certified compilers. Cambridge Univer-
sity Press, 2014. [Cited on pages 79 and 106.]

[ari96] Ariane 5 flight 501 failure. Report by the inquiry board, July 1996. [Cited on
page 1.]

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A
few billion lines of code later: using static analysis to find bugs in the real
world. Communications of the ACM, 53(2):66–75, 2010. [Cited on page 43.]

[BC04] Yves Bertot and Pierre Castéran. Interactive theorem proving and program
development. Coq’Art: the calculus of inductive constructions. Springer, 2004.
[Cited on page 18.]

[BCC+02] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. Design
and implementation of a special-purpose static program analyzer for safety-
critical real-time embedded software. In The Essence of Computation, volume
2566 of LNCS, pages 85–108. Springer, 2002. [Cited on pages 2, 43, 122, and 181.]

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static an-
alyzer for large safety-critical software. In PLDI ’03, pages 196–207. ACM,
2003. [Cited on pages 43 and 49.]

[BCJP09] Frédéric Besson, David Cachera, Thomas Jensen, and David Pichardie. Cer-
tified static analysis by abstract interpretation. In Foundations of Security
Analysis and Design V, volume 5705 of LNCS, pages 223–257. Springer, 2009.
[Cited on page 44.]

219

http://wiki.portal.chalmers.se/agda/
http://alt-ergo.lri.fr/

Bibliography

[BD98] Jeremy T. Bradley and Neil J. Davies. Compositional BDD construction: A
lazy algorithm. Technical Report CSTR-98-005, Department of Computer
Science, University of Bristol, 1998. [Cited on page 210.]

[BDL06] Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a
C compiler front-end. In FM 2006: Formal Methods, volume 4085 of LNCS,
pages 460–475. Springer, 2006. [Cited on pages 12 and 24.]

[BDP14] Gilles Barthe, Delphine Demange, and David Pichardie. Formal verification
of an ssa-based middle-end for compcert. ACM Transactions on Programming
Languages and Systems (TOPLAS), 36(1):4, 2014. [Cited on page 24.]

[Ber09] Yves Bertot. Structural abstract interpretation: A formal study using Coq.
In Language Engineering and Rigorous Software Development, volume 5520
of LNCS, pages 153–194. Springer, 2009. [Cited on pages 44, 105, and 106.]

[BHJ06] Robert S. Boyer and Warren A. Hunt Jr. Function memoization and unique
object representation for acl2 functions. In ACL2 ’06: Proceedings of the
sixth international workshop on the ACL2 theorem prover and its applications,
pages 81–89. ACM, 2006. [Cited on page 211.]

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification
of Object-Oriented Software: The KeY Approach, volume 4334 of LNAI.
Springer, 2007. [Cited on page 210.]

[BHZ09] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. Weakly-relational
shapes for numeric abstractions: Improved algorithms and proofs of correct-
ness. Formal Methods in System Design, 35(3):279–323, 2009. [Cited on pages
146, 151, 154, 155, 158, 172, 173, 174, and 175.]

[BJLM13] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. A formally-verified C compiler supporting floating-point arith-
metic. In 22nd IEEE Symposium on Computer Arithmetic (ARITH), pages
107–115, 2013. [Cited on pages 61 and 131.]

[BJLM15] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. Verified compilation of floating-point computations. Journal
of Automated Reasoning (JAR), 54(2):135–163, 2015. [Cited on pages 61, 131,
and 216.]

[BJM13] Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. Implement-
ing hash-consed structures in Coq. In Interactive Theorem Proving (ITP),
volume 7998 of LNCS, pages 477–483. Springer, 2013. [Cited on page 182.]

[BJM14] Thomas Braibant, Jacques-Henri Jourdan, and David Monniaux. Imple-
menting and reasoning about hash-consed data structures in Coq. Journal
of Automated Reasoning, 53(3):271–304, 2014. [Cited on pages 182 and 198.]

[BJS15] Martin Bodin, Thomas Jensen, and Alan Schmitt. Certified abstract inter-
pretation with pretty-big-step semantics. In CPP ’15, pages 29–40. ACM,
2015. [Cited on page 45.]

220

Bibliography

[BKH+08] Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and
John Matthews. Imperative functional programming with Isabelle/HOL. In
Theorem Proving in Higher Order Logics (TPHOL), volume 5170 of LNCS,
pages 134–149. Springer, 2008. [Cited on page 210.]

[BLMP13] Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie.
Formal verification of a C value analysis based on abstract interpretation. In
Static Analysis (SAS), volume 7935 of LNCS, pages 324–344. Springer, 2013.
[Cited on pages 44, 111, and 121.]

[BM11] Sylvie Boldo and Guillaume Melquiond. Flocq: A unified library for proving
floating-point algorithms in Coq. In 20th IEEE Symposium on Computer
Arithmetic (ARITH), pages 243–252, 2011. [Cited on pages 27, 61, and 131.]

[Boo] The Boogie tool. http://research.microsoft.com/en-us/projects/boogie/.
[Cited on page 16.]

[Bou93] François Bourdoncle. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and their Applications, volume 735 of
LNCS, pages 128–141. Springer, 1993. [Cited on pages 39, 40, 45, and 77.]

[CC76] Patrick Cousot and Radhia Cousot. Static determination of dynamic proper-
ties of programs. In Proceedings of the Second International Symposium on
Programming, pages 106–130. Dunod, 1976. [Cited on pages 29, 42, 49, and 126.]

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In POPL ’77, pages 238–252. ACM, 1977. [Cited on pages 29, 49,
and 105.]

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL ’79, pages 269–282. ACM, 1979. [Cited on pages 29, 49,
64, and 73.]

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, 1992. [Cited on page 49.]

[CCF+06] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. Combination of abstractions in
the Astrée static analyzer. In Advances in Computer Science - ASIAN 2006,
volume 4435 of LNCS, pages 272–300. Springer, 2006. [Cited on pages 49, 55,
65, and 73.]

[CCF+09] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine
Miné, and Xavier Rival. Why does astrée scale up? Formal Methods in
System Design, 35(3):229–264, 2009. [Cited on pages 107, 122, 127, 146, and 181.]

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric seg-
mentation functor for fully automatic and scalable array content analysis. In
POPL ’11, pages 105–118. ACM, 2011. [Cited on page 216.]

[CCM11] Patrick Cousot, Radhia Cousot, and Laurent Mauborgne. The reduced prod-
uct of abstract domains and the combination of decision procedures. In
Foundations of Software Science and Computation Structures (FOSSACS),
volume 6604 of LNCS, pages 456–472. Springer, 2011. [Cited on page 73.]

221

http://research.microsoft.com/en-us/projects/boogie/

Bibliography

[Cer] Certikos: Certified kit operating system. http://flint.cs.yale.edu/
certikos/. [Cited on pages 3 and 25.]

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In POPL ’78, pages 84–96. ACM,
1978. [Cited on page 50.]

[Chl13] Adam Chlipala. Certified programming with dependent types: A pragmatic
introduction to the Coq proof assistant. MIT Press, 2013. [Cited on page 18.]

[CJPR04] David Cachera, Thomas Jensen, David Pichardie, and Vlad Rusu. Extracting
a data flow analyser in constructive logic. In Programming Languages and
Systems, volume 2986 of LNCS, pages 385–400. Springer, 2004. [Cited on
page 44.]

[CJPS05] David Cachera, Thomas Jensen, David Pichardie, and Gerardo Schneider.
Certified memory usage analysis. In FM 2005: Formal Methods, volume
3582 of LNCS, pages 91–106. Springer, 2005. [Cited on page 44.]

[CKCY13] Sungkeun Cho, Jeehoon Kang, Joonwon Choi, and Kwangkeun Yi. Spar-
rowberry: A verified validator for an industrial-strength static analyzer.
http://ropas.snu.ac.kr/sparrowberry/, 2013. [Cited on pages 2 and 45.]

[CLCVH94] Agostino Cortesi, Baudouin Le Charlier, and Pascal Van Hentenryck. Com-
binations of abstract domains for logic programming. In POPL ’94, pages
227–239. ACM, 1994. [Cited on page 73.]

[CN08] Boutheina Chetali and Quang-Huy Nguyen. Industrial use of formal methods
for a high-level security evaluation. In FM 2008: Formal Methods, volume
5014 of LNCS, pages 198–213. Springer, 2008. [Cited on page 26.]

[Com] The CompCert C verified compiler. http://compcert.inria.fr/. [Cited on
page 24.]

[Coqa] The Coq proof assistant. https://coq.inria.fr/. [Cited on pages 3, 16, and 18.]

[Coqb] The Coq reference manual. https://coq.inria.fr/distrib/current/refman/.
[Cited on page 18.]

[Cou02] Patrick Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoretical Computer Science, 277(1):47–
103, 2002. [Cited on page 36.]

[CP10] David Cachera and David Pichardie. A certified denotational abstract inter-
preter. In Interactive Theorem Proving (ITP), volume 6172 of LNCS, pages
9–24. Springer, 2010. [Cited on page 44.]

[CRK14] Aziem Chawdhary, Ed Robbins, and Andy King. Simple and efficient al-
gorithms for octagons. In Programming Languages and Systems (APLAS),
volume 8858 of LNCS, pages 296–313. Springer, 2014. [Cited on pages 146
and 151.]

[CVC] The CVC4 SMT solver. http://cvc4.cs.nyu.edu/web/. [Cited on page 16.]

222

http://flint.cs.yale.edu/certikos/
http://flint.cs.yale.edu/certikos/
http://ropas.snu.ac.kr/sparrowberry/
http://compcert.inria.fr/
https://coq.inria.fr/
https://coq.inria.fr/distrib/current/refman/
http://cvc4.cs.nyu.edu/web/

Bibliography

[CZC+15] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using crash hoare logic for certifying
the FSCQ file system. In SOSP ’15, pages 18–37. ACM, 2015. [Cited on pages
3 and 26.]

[DGP+09] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal,
and Franck Védrine. Towards an industrial use of Fluctuat on safety-
critical avionics software. In Formal Methods for Industrial Critical Sys-
tems (FMICS), volume 5825 of LNCS, pages 53–69. Springer, 2009. [Cited on
page 43.]

[DVH15] David Darais and David Van Horn. Constructive galois connections. http:
//arxiv.org/abs/1511.06965, 2015. [Cited on page 45.]

[F*] The F* language. https://www.fstar-lang.org/. [Cited on page 18.]

[FB14] Alexis Fouilhé and Sylvain Boulmé. A certifying frontend for (sub)polyhedral
abstract domains. In Verified Software: Theories, Tools and Experiments
(VSTTE), volume 8471 of LNCS, pages 200–215. Springer, 2014. [Cited on
pages 3, 57, 146, 213, and 214.]

[FC06] Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-
consing. In Proceedings of the 2006 workshop on ML, pages 12–19. ACM,
2006. [Cited on pages 198, 202, and 204.]

[Fer04] Jérôme Feret. Static analysis of digital filters. In Programming Languages
and Systems (ESOP), volume 2986 of LNCS, pages 33–48. Springer, 2004.
[Cited on page 215.]

[Fer05] Jérôme Feret. The arithmetic-geometric progression abstract domain. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), volume
3385 of LNCS, pages 42–58. Springer, 2005. [Cited on page 215.]

[Fig95] Samuel A. Figueroa. When is double rounding innocuous? ACM SIGNUM
Newsletter, 30(3):21–26, 1995. [Cited on pages 111 and 115.]

[FL10] Manuel Fähndrich and Francesco Logozzo. Static contract checking with
abstract interpretation. In Formal Verification of Object-Oriented Software,
volume 6528 of LNCS, pages 10–30. Springer, 2010. [Cited on page 43.]

[FMP13] Alexis Fouilhé, David Monniaux, and Michaël Périn. Efficient generation
of correctness certificates for the abstract domain of polyhedra. In Static
Analysis (SAS), volume 7935 of LNCS, pages 345–365. Springer, 2013. [Cited
on pages 3, 57, 146, 213, and 214.]

[Fv] The Frama-C tool, Value plug-in. http://frama-c.com/value.html. [Cited on
page 43.]

[Fwp] The Frama-C tool, WP plug-in. http://frama-c.com/wp.html. [Cited on
page 16.]

[GAA+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen,
François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor,
Sidi Ould Biha, et al. A machine-checked proof of the odd order theorem. In
Interactive Theorem Proving (ITP), volume 7998 of LNCS, pages 163–179.
Springer, 2013. [Cited on page 27.]

223

http://arxiv.org/abs/1511.06965
http://arxiv.org/abs/1511.06965
https://www.fstar-lang.org/
http://frama-c.com/value.html
http://frama-c.com/wp.html

Bibliography

[GKR+15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiong-
nan Newman Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep
specifications and certified abstraction layers. In POPL ’15, pages 595–608.
ACM, 2015. [Cited on page 25.]

[GLGP12] Eric Goubault, Tristan Le Gall, and Sylvie Putot. An accurate join for
zonotopes, preserving affine input/output relations. In Proceedings of the
Fourth International Workshop on Numerical and Symbolic Abstract Domains
(NSAD), volume 287 of ENTCS, pages 65–76. Elsevier, 2012. [Cited on pages
50 and 146.]

[Gon08] Georges Gonthier. Formal proof–the four-color theorem. Notices of the AMS,
55(11):1382–1393, 2008. [Cited on page 27.]

[Gou94a] Jean Goubault. HimML: Standard ML with fast sets and maps. In Workshop
on ML and its Applications, 1994. [Cited on page 211.]

[Gou94b] Jean Goubault. Implementing functional languages with fast equality, sets
and maps: an exercise in hash consing. Technical report, Bull S.A. Research
Center, 1994. [Cited on page 211.]

[Gra89] Philippe Granger. Static analysis of arithmetical congruences. International
Journal of Computer Mathematics, 30(3-4):165–190, 1989. [Cited on page 134.]

[GS12] Mathieu Giorgino and Martin Strecker. Correctness of pointer manipulating
algorithms illustrated by a verified bdd construction. In FM 2012: Formal
Methods, volume 7436 of LNCS, pages 202–216. Springer, 2012. [Cited on
page 210.]

[GT06] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In PLDI
’06, pages 376–386. ACM, 2006. [Cited on page 73.]

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969. [Cited on page 12.]

[Idr] The Idris language. https://www.idris-lang.org/. [Cited on page 18.]

[IEE08] IEEE Computer Society. 754-2008 – IEEE standard for floating-point arith-
metic, 2008. [Cited on page 27.]

[Isa] The Isabelle proof assistant. https://isabelle.in.tum.de/. [Cited on page 16.]

[ISO99] ISO. Programming languages – C, 1999. ISO Working Group 14. [Cited on
pages 12 and 128.]

[JLB+15] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie. A formally-verified C static analyzer. In POPL ’15, pages
247–259. ACM, 2015. [Cited on pages 4 and 215.]

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. sel4: Formal verification of an os kernel. In SOSP
’09, pages 207–220. ACM, 2009. [Cited on page 25.]

224

https://www.idris-lang.org/
https://isabelle.in.tum.de/

Bibliography

[KN06] Gerwin Klein and Tobias Nipkow. A machine-checked model for a java-like
language, virtual machine, and compiler. ACM Transactions on Programming
Languages and Systems (TOPLAS), 28(4):619–695, 2006. [Cited on page 24.]

[Knu11] Donald E. Knuth. The Art of Computer Programming, volume 4A, chapter
7.1.4. Addison-Wesley, 2011. Binary decision diagrams. [Cited on pages 186
and 187.]

[Kre15] Robbert Krebbers. The C standard formalized in Coq. PhD thesis, Radboud
University Nijmegen, Dec. 2015. [Cited on pages 12 and 106.]

[Lap15] Vincent Laporte. Vérification d’analyses statiques pour langages de bas
niveau. PhD thesis, Université de Rennes 1, November 2015. [Cited on pages
3, 4, 57, and 214.]

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or: programming
a compiler with a proof assistant. In POPL ’06, pages 42–54. ACM, 2006.
[Cited on pages 12 and 24.]

[Ler09a] Xavier Leroy. Formal verification of a realistic compiler. Communications of
the ACM, 52(7):107–115, 2009. [Cited on pages 3 and 24.]

[Ler09b] Xavier Leroy. A formally verified compiler back-end. Journal of Automated
Reasoning, 43(4):363–446, 2009. [Cited on pages 24 and 78.]

[Ler12] Xavier Leroy. Proving a compiler: Mechanized verification of program
transformations and static analyses. Oregon Programming Language Sum-
mer School, 2012. http://gallium.inria.fr/~xleroy/courses/Eugene-2012/.
[Cited on page 44.]

[LF08a] Francesco Logozzo and Manuel Fähndrich. On the relative completeness
of bytecode analysis versus source code analysis. In Compiler Construction
(CC), volume 4959 of LNCS, pages 197–212. Springer, 2008. [Cited on page 137.]

[LF08b] Francesco Logozzo and Manuel Fähndrich. Pentagons: a weakly relational
abstract domain for the efficient validation of array accesses. In SAC ’08,
pages 184–188. ACM, 2008. [Cited on pages 146 and 215.]

[LL09] Vincent Laviron and Francesco Logozzo. Subpolyhedra: A (more) scalable
approach to infer linear inequalities. In Verification, Model Checking, and
Abstract Interpretation (VMCAI), volume 5403 of LNCS, pages 229–244.
Springer, 2009. [Cited on pages 146 and 215.]

[LT93] Nancy G Leveson and Clark S Turner. An investigation of the Therac-25
accidents. Computer, 26(7):18–41, 1993. [Cited on page 1.]

[Mel12] Guillaume Melquiond. Floating-point arithmetic in the Coq system. Infor-
mation and Computation, 216:14–23, 2012. [Cited on page 188.]

[Min04] Antoine Miné. Weakly relational numerical abstract domains. PhD thesis,
École Polytechnique, Dec. 2004. [Cited on pages 55, 127, 137, 146, 148, 150, 151,
154, 155, 160, 164, 169, 170, 172, 175, and 177.]

[Min06a] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006. [Cited on pages 146 and 151.]

225

http://gallium.inria.fr/~xleroy/courses/Eugene-2012/

Bibliography

[Min06b] Antoine Miné. Symbolic methods to enhance the precision of numerical ab-
stract domains. In Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 3855 of LNCS, pages 348–363. Springer, 2006. [Cited on
pages 137 and 138.]

[miT] miTLS: A verified reference implementation of TLS. https://mitls.org/.
[Cited on page 26.]

[Mon98] David Monniaux. Réalisation mécanisée d’interpréteurs abstraits, 1998. In
french. [Cited on page 43.]

[MP14] Alexandre Maréchal and Michaël Périn. Three linearization techniques for
multivariate polynomials in static analysis using convex polyhedra. Technical
Report TR-2014-7, Verimag, 2014. [Cited on page 148.]

[Nip12] Tobias Nipkow. Abstract interpretation of annotated commands. In Interac-
tive Theorem Proving (ITP), volume 7406 of LNCS, pages 116–132. Springer,
2012. [Cited on page 44.]

[NK14] Tobias Nipkow and Gerwin Klein. Chapter 13: Abstract interpretation. In
Concrete Semantics with Isabelle/HOL, pages 219–280. Springer, 2014. [Cited
on page 44.]

[NO79] Greg Nelson and Derek C Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1(2):245–257, 1979. [Cited on page 73.]

[NSSS12] Jorge A Navas, Peter Schachte, Harald Søndergaard, and Peter J Stuckey.
Signedness-agnostic program analysis: Precise integer bounds for low-level
code. In Programming Languages and Systems, volume 7705 of LNCS, pages
115–130. Springer, 2012. [Cited on page 111.]

[O’H04] Peter W O’Hearn. Resources, concurrency and local reasoning. In CONCUR
2004 – Concurrency Theory, volume 3170 of LNCS, pages 49–67. Springer,
2004. [Cited on page 106.]

[OS05] Veronika Ortner and Norbert Schirmer. Verification of BDD normalization.
In Theorem Proving in Higher Order Logics (TPHOL), volume 3603 of LNCS,
pages 261–277. Springer, 2005. [Cited on page 211.]

[PCG+15] Benjamin C. Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg,
Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. Software foundations.
http://www.cis.upenn.edu/~bcpierce/sf, 2015. [Cited on page 18.]

[PG06] Sylvie Putot and Eric Goubault. Static analysis of numerical algorithms. In
Static Analysis (SAS), volume 4134 of LNCS, pages 18–34. Springer, 2006.
[Cited on page 146.]

[Pic05] David Pichardie. Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. PhD thesis, Université Rennes 1, 2005. In french.
[Cited on pages 2, 44, 49, 54, 121, and 127.]

226

https://mitls.org/
http://www.cis.upenn.edu/~bcpierce/sf

Bibliography

[Pic08] David Pichardie. Building certified static analysers by modular construction
of well-founded lattices. In Proceedings of the First International Conference
on Foundations of Informatics, Computing and Software (FICS), volume 212
of ENTCS, pages 225–239. Elsevier, 2008. [Cited on page 44.]

[Rey02] John C Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In 17th IEEE Symposium on Logic in Computer Science, pages 55–74,
2002. [Cited on page 14.]

[RM07] Xavier Rival and Laurent Mauborgne. The trace partitioning abstract
domain. ACM Transactions on Programming Languages and Systems
(TOPLAS), 29(5), 2007. [Cited on pages 106 and 215.]

[Rou14] Pierre Roux. Innocuous double rounding of basic arithmetic operations. Jour-
nal of Formalized Reasoning (JFR), 7(1):131–142, 2014. [Cited on pages 111
and 115.]

[SBCA15] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W Appel.
Compositional CompCert. In POPL ’15, pages 275–287. ACM, 2015. [Cited
on page 24.]

[seL] The seL4 microkernel. https://sel4.systems/. [Cited on pages 3 and 25.]

[SK10] Axel Simon and Andy King. The two variable per inequality abstract do-
main. Higher-Order and Symbolic Computation, 23(1):87–143, 2010. [Cited
on page 146.]

[Soz07] Matthieu Sozeau. Subset coercions in Coq. In Types for Proofs and Programs,
volume 4502 of LNCS, pages 237–252. Springer, 2007. [Cited on page 183.]

[SPV15] Gagandeep Singh, Markus Püschel, and Martin Vechev. Making numerical
program analysis fast. In PLDI 2015, pages 303–313. ACM, 2015. [Cited on
pages 146 and 151.]

[ŠVZN+13] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagan-
nathan, and Peter Sewell. CompCertTSO: A verified compiler for relaxed-
memory concurrency. Journal of the ACM, 60(3):22, 2013. [Cited on page 24.]

[Vaf13] Viktor Vafeiadis. Adjustable references. In Interactive Theorem Proving
(ITP), volume 7998 of LNCS, pages 328–337. Springer, 2013. [Cited on pages
190 and 210.]

[VGL00] Kumar Neeraj Verma and Jean Goubault-Larrecq. Reflecting BDDs in Coq.
Rapport de recherche RR-3859, INRIA, 2000. [Cited on pages 191 and 211.]

[VGLPAK00] Kumar Neeraj Verma, Jean Goubault-Larrecq, Sanjiva Prasad, and S. Arun-
Kumar. Reflecting BDDs in Coq. In Advances in Computing Science
(ASIAN), volume 1961 of LNCS, pages 162–181. Springer, 2000. [Cited on
pages 191, 208, and 211.]

[VOC] VOCaL project. https://vocal.lri.fr/. [Cited on page 216.]

[VST] The verifiable software toolchain. http://vst.cs.princeton.edu/. [Cited on
page 24.]

227

https://sel4.systems/
https://vocal.lri.fr/
http://vst.cs.princeton.edu/

Bibliography

[Why] The Why3 tool. http://why3.lri.fr/. [Cited on page 16.]

[YH11] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. Communications of the ACM,
54(12):123–131, 2011. [Cited on page 25.]

[Z3] The Z3 SMT solver. https://github.com/Z3Prover/z3. [Cited on page 16.]

228

http://why3.lri.fr/
https://github.com/Z3Prover/z3

Résumé

Afin de développer des logiciels plus sûrs pour des applications critiques, certains ana-
lyseurs statiques tentent d’établir, avec une certitude mathématique, l’absence de certains
types de bugs dans un programme donné. Une limite possible à cette approche est l’éven-
tualité d’un bug affectant la correction de l’analyseur lui-même, éliminant ainsi les garanties
qu’il est censé apporter.
Dans cette thèse, nous proposons d’établir des garanties formelles sur l’analyseur lui-

même : nous présentons la conception, l’implantation et la preuve de sûreté en Coq de
Verasco, un analyseur statique formellement vérifié utilisant l’interprétation abstraite pour
le langage ISO C99 avec l’arithmétique flottante IEEE754 (à l’exception de la récursion
et de l’allocation dynamique de mémoire). Verasco a pour but d’établir l’absence d’erreur
à l’exécution des programmes donnés. Il est conçu selon une architecture modulaire et
extensible contenant plusieurs domaines abstraits et des interfaces bien spécifiées. Nous
détaillons le fonctionnement de l’itérateur abstrait de Verasco, son traitement des entiers
bornés de la machine, son domaine abstrait d’intervalles, son domaine abstrait symbolique
et son domaine abstrait d’octogones. Verasco a donné lieu au développement de nouvelles
techniques pour implémenter des structures de données avec partage dans Coq.

Abstract

In order to develop safer software for critical applications, some static analyzers aim at
establishing, with mathematical certitude, the absence of some classes of bug in the input
program. A possible limit to this approach is the possibility of a soundness bug in the static
analyzer itself, which would nullify the guarantees it is supposed to deliver.
In this thesis, we propose to establish formal guarantees on the static analyzer itself:

we present the design, implementation and proof of soundness using Coq of Verasco, a
formally verified static analyzer based on abstract interpretation handling most of the ISO
C99 language, including IEEE754 floating-point arithmetic (except recursion and dynamic
memory allocation). Verasco aims at establishing the absence of erroneous behavior of the
given programs. It enjoys a modular extendable architecture with several abstract domains
and well-specified interfaces. We present the abstract iterator of Verasco, its handling of
bounded machine arithmetic, its interval abstract domain, its symbolic abstract domain
and its abstract domain of octagons. Verasco led to the development of new techniques for
implementing data structure with sharing in Coq.

	Introduction
	Software Safety and Formal Methods
	Context and Goals of this Project
	Contributions and Structure of this Document

	Context
	Introduction to Functional Formal Verification of Software
	Formalizing Proofs of Programs
	The Toy Language and its Operational Semantics
	Reasoning on Toy Programs
	Weakest Preconditions and Deductive Verification
	Model Checking
	Dependent Type Systems

	The Coq Proof Assistant
	Coq as a Programming Language
	The Curry-Howard Correspondence: Coq as a Proof Assistant
	Inductive and Coinductive Types in Coq
	Extracting OCaml Programs from Coq Terms
	Axioms

	Other Formal Verification Projects
	Formal Verification of Programming Tools
	Formal Verification of Operating System Components
	Verification of Security Properties
	Formally Verified Mathematical Theorems

	Introduction to Abstract Interpretation
	Abstract Interpretation Concepts
	Lattices
	Galois Connections
	Transfer Functions
	Reductions
	Products of Abstract Domains

	Analyzing Toy Programs
	Collecting Semantics
	Approximating the Collecting Semantics
	Approximating Sets of Environments: Non-Relational Abstractions
	Abstract Semantics
	Deducing Properties of the Program
	Structural Abstract Interpretation

	State of the Art in Static Analysis by Abstract Interpretation
	Static Analyzers Based on Abstract Interpretation
	Mechanization of Abstract Interpretation

	Formally Verified Abstract Interpretation
	A Modular Architecture
	Abstract Interpretation in Practice
	Galois Connections and Lattice Structure
	Widening Operator

	Abstract Domains Hierarchy
	State Abstract Domain Interface
	Machine Numerical Domain Interface
	Ideal Numerical Domain Interface

	Communication Between Numerical Abstract Domains
	Message Channels
	Query Channels
	Internal Interface for Numerical Abstract Domains
	Related Work on Abstract Domains Combination

	Iterating Over the C#minor Language
	The C#minor Language
	Syntax
	Motivation for C#minor
	Formal Semantics

	An Axiomatic Semantics for C#minor
	Semantic Rules
	Consequence Rules
	Conjunction and Disjunction Rules
	Loop Unrolling and Decreasing Iterations
	Soundness of the Hoare Logic

	Design and Proof of the Abstract Interpreter
	Transfer Functions
	Soundness
	Inferring Invariants Using Widening and Decreasing Steps

	Related Work and Perspectives
	Comparison with Related Work
	Possible Extensions to the Interpreter

	The Numerical Backend of Verasco
	Handling Machine Arithmetic
	Relating Ideal Environments and Machine Environments
	Translating Expressions
	Leaves: Variables, Literals and Non-Deterministic Atoms
	Operators Preserving Classes Modulo 2N
	Other Integer Arithmetic Operators
	Floating-Point Arithmetic
	Conversion Operators

	Handling Ambiguity
	Abstract Transfer Functions and Lattice Operations
	Weaknesses and Possible Improvements

	Non-Relational Numerical Abstract Domains
	Common Non-Relational to Relational Functor
	Pointwise Operations : ⊑, ⊔ and ▽
	Forward Analysis of Expressions
	Implementation of assign
	Backward Analysis of expressions
	Receiving Messages

	Interval Abstract Domain
	Integer Arithmetic
	Bitwise Operators
	Forward Transfer Functions for Floats
	Backward Transfer Functions for Floating-Point Arithmetic
	Cooperation with Other Domains

	Arithmetical Congruences

	Symbolic Equalities
	Abstract Environments and their Concretization
	Data Structures
	Concretization

	Lattice Operations
	Abstract Transfer Functions and Channels
	Examples

	Octagons and Expression Linearization
	Expression Linearization
	Quasi-Linear Expressions
	Converting Expressions into Quasi-Linear Expressions
	Linearization Abstract Domain

	Theoretical Setting for Octagons
	Difference Bound Matrices
	Closures
	Comparing Difference Bound Matrices
	Forgetting Variables
	Join
	Assuming Constraints
	Widening
	A Note on Tightening

	Implementation of Octagons in Verasco
	Data Structures for Octagons in Verasco
	Implementing Abstract Operations
	Cooperation with Other Domains

	Perspectives and Conclusions
	Data Structures with Sharing in Coq
	Safe Physical Equality in Coq: the physEq Approach
	Exploiting Sharing When Combining Maps
	Improving Sharing Using Physical Equality

	Introduction to Hash-Consing, Memoization and BDDs
	A Primer on Binary Decision Diagrams
	Memoization in Coq: the State of the Art
	Implementing BDDs in Coq.

	Pure BDD Implementations
	The pure-deep Approach
	The pure-shallow Approach

	From Pure Data Structures to Persistent Data Structures Via Extraction
	The smart Approach
	The smart+uid Approach

	Comparison
	Related Work

	Conclusions
	Achievements
	Formalization Effort
	Expected Impact

	Perspectives and Future Work
	Using New Abstract Domains and Analysis Techniques
	Improving Performance
	Leveraging the Results of the Analyses
	Experimenting Verasco on Real Code

