
RustHornBelt: A Semantic Foundation for Functional
Verification of Rust Programs with Unsafe Code

Yusuke Matsushita

The University of Tokyo

Tokyo, Japan

yskm24t@is.s.u-tokyo.ac.jp

Xavier Denis

Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA,

Laboratoire Méthodes Formelles

Gif-sur-Yvette, France

xldenis@lri.fr

Jacques-Henri Jourdan

Université Paris-Saclay, CNRS, ENS Paris-Saclay, INRIA,

Laboratoire Méthodes Formelles

Gif-sur-Yvette, France

jacques-henri.jourdan@lri.fr

Derek Dreyer

MPI-SWS

Saarbrücken, Germany

dreyer@mpi-sws.org

Abstract
Rust is a systems programming language that offers both low-

level memory operations and high-level safety guarantees,

via a strong ownership type system that prohibits mutation

of aliased state. In prior work, Matsushita et al. developed

RustHorn, a promising technique for functional verification

of Rust code: it leverages the strong invariants of Rust types

to express the behavior of stateful Rust code with first-order

logic (FOL) formulas, whose verification is amenable to off-

the-shelf automated techniques. RustHorn’s key idea is to

use prophecies to describe the behavior of mutable borrows.

However, the soundness of RustHorn was only established

for a safe subset of Rust, and it has remained unclear how to

extend it to support various safe APIs that encapsulate unsafe
code (i.e., code where Rust’s aliasing discipline is relaxed).

In this paper, we presentRustHornBelt, the first machine-

checked proof of soundness for RustHorn-style verification

which supports giving FOL specs to safe APIs implemented

with unsafe code. RustHornBelt employs the approach of

semantic typing used in Jung et al.’s RustBelt framework,

but it extends RustBelt’s model to reason not only about

safety but also functional correctness. The key challenge in

RustHornBelt is to develop a semantic model of RustHorn-

style prophecies, which we achieve via a new separation-

logic mechanism we call parametric prophecies.

CCS Concepts: • Theory of computation→ Program-
ming logic; Separation logic; Type theory.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523704

Keywords: Rust, separation logic, verification, type systems,

prophecy variables, Iris

ACM Reference Format:
YusukeMatsushita, Xavier Denis, Jacques-Henri Jourdan, andDerek

Dreyer. 2022. RustHornBelt: A Semantic Foundation for Functional

Verification of Rust Programs with Unsafe Code. In Proceedings of
the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (PLDI ’22), June 13–17, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3519939.3523704

1 Introduction
The Rust programming language [39, 30, 27] has shown that

high-level safety is not fundamentally at odds with low-level

control. Drawing from decades of academic research [45, 11],

Rust employs an ownership type system, where aliasing of

pointers is tracked statically and direct mutation of aliased

state is prohibited. This serves to guarantee memory safety

and data-race freedom even in the presence of low-level

features like interior pointers and manual deallocation. Un-

surprisingly, the arrival of a language with low-level control

as in C/C++, as well as stronger safety guarantees than in

most existing languages, has been met with great interest

by academic researchers and industrial software developers

alike [22, 21, 19, 35, 17, 37, 40].

However, as Rust gets deployed in ever more critical posi-

tions in the software stack, the need to go beyond the mere

safety guarantees of the language grows more pressing. Re-

cently, several projects have developed tools for functional
verification of Rust programs, with a focus on how the safety

guarantees provided by the Rust type system can be exploited

to simplify the verification problem.

Prusti [6] uses information from the Rust compiler to auto-

matically synthesize separation logic [38] proofs of memory

safety for Rust programs in the Viper framework [36]; the

user can then verify functional correctness on top by instru-

menting the source code with additional annotations.

https://orcid.org/0000-0002-5208-3106
https://orcid.org/0000-0003-2530-8418
https://orcid.org/0000-0002-9781-7097
https://orcid.org/0000-0002-3884-6867
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704
https://doi.org/10.1145/3519939.3523704

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

RustHorn by Matsushita et al. [32, 33] goes even further,

eliminating separation logic from the picture entirely: they

show that, using Rust’s strong aliasing guarantees, the behav-

ior of (well-typed) Rust programs can be described in first-

order logic (FOL) formulas, without any explicit representa-

tion of memory or separation logic analogues like points-to

assertions. This encoding is amenable to off-the-shelf logic

solvers, as they demonstrated with fully automated verifica-

tion using CHC (constrained Horn clause) solvers [9].

However, both Prusti and RustHorn share a common limi-

tation: they assume that the program being verified is writ-

ten entirely in the safe fragment of Rust. In reality, however,

many Rust programs depend on APIs that, while observably

safe, are implemented internally with features that are unsafe
(i.e., not guarded by Rust’s static ownership checking), such

as raw pointer accesses and unchecked type casts. For exam-

ple, the widely used Vec API (for growable arrays) manages

its underlying buffer and performs memory access using

raw pointers. The Cell API provides a restricted (e.g., single-
threaded) form of sharedmutable state, allowing the contents

of a Cell to be mutated through a shared (immutable) ref-

erence to the Cell. It has remained unclear how to soundly

extend the formal foundations of Prusti and RustHorn to

account for APIs like these that safely encapsulate uses of

unsafe code.

In this paper, we present RustHornBelt, a semantic foun-
dation for proving soundness of RustHorn-style verification,

which is compatible with safe APIs built from unsafe code,

like Vec and Cell, and is mechanized in Coq [12]. RustHorn-

Belt builds on the RustBelt soundness proof for Rust [21],

extending it with a model of types based on RustHorn—an ex-

tension that required us to develop several novel techniques

in separation logic. Before we get there, though, let us briefly

review the prior work on RustHorn and RustBelt.

RustHorn: Leveraging Rust types to verify stateful
programs in first-order logic. One of the greatest chal-
lenges in automatically checking the safety of stateful pro-

grams is dealing with mutation of aliased (or shared) state.
When an object can be aliased between multiple parts of a

program—i.e., there exist multiple references to it—and one

alias is used to mutate or potentially deallocate the object, it

can be difficult to reason modularly about the result of that

mutation from the perspective of the other aliases.

Rust’s type system tackles this challenge by restricting

the mutation of aliased state. In particular, the design of Rust

is centered around the principle of Aliasing XOR Mutabil-
ity (AXM), which says that an object can either be aliased

or be mutable, but cannot be both at the same time. The

AXM principle is enforced through the concept of ownership.
By default, objects are exclusively “owned”, meaning that

whichever piece of code can refer to the object can freely

mutate and/or deallocate it but has unique access: there can

be no aliases.

However, exclusive ownership per se would be too restric-

tive to account for common C++-style programming idioms.

Thus, to enable objects to be passed by reference or shared

between multiple parts of the program, Rust introduces the

concept of borrowing. Given an object x, one can create ei-

ther a mutable borrow (&mut x) or a shared borrow (&x) of it.
The former has type &𝛼 mut T, which represents the unique
right to both read and mutate the object, but only during the

lifetime 𝛼 .1 The latter has type &𝛼 T, which represents the

freely duplicable right to read the object during 𝛼 , but not to

write it. In either case, during the lifetime 𝛼 of the borrow,

the original owner of the object loses both read and write

access to the object, regaining them only once 𝛼 is over.

The key insight of RustHorn by Matsushita et al. [32, 33]

is that, by severely restrictingmutation of shared state, Rust’s

AXM discipline makes it possible to give a pure, first-order
logic (FOL) formulation of the behavior of stateful Rust code,

which is more amenable to fully automatic verification than

approaches based on separation logic. For the cases of shared

borrows and fully owned objects, this is not too surprising:

the former temporarily prohibit state change, and the latter

can be described in a standard state-passing style [45, 10, 8].

The interesting case is mutable borrows, for which the

key question is how to “communicate” the result of state

changes through the mutable borrow back to the original

owner (lender) of the object, without relying on stateful rea-

soning à la separation logic. RustHorn solves this challenge

by using prophecies. Prophecies are a classic technique in

program verification [1, 44, 24], through which, when ver-

ifying a program, one can make proof decisions based on

peeking into its future execution. RustHorn uses prophecies

to express mutable borrows in functional style: as a pair of

the current value of the object and the final (prophesied)
value the object will have when the borrow ends.

RustHorn’s approach to simplifying the Rust verification

problem has already been influential, giving rise to a semi-

automated Rust verifier Creusot [15], which uses RustHorn-

style prophecy-based translation. RustHorn also motivated

recent work on CHC solving [26].

RustBelt: Tackling Rust’s type soundness semanti-
cally. Matsushita et al. [32, 33] established the soundness of

RustHorn via a syntactic proof, which supports a significant

subset of the safe fragment of the Rust language. However,

this approach fundamentally bakes in the assumption that all

code in the program adheres to the AXM discipline enforced

by the Rust type system. As soon as any code in the program

violates this discipline by using unsafe features of Rust, the
syntactic approach breaks down.

This limitation of syntactic proofs of soundness was previ-

ously articulated and tackled by Jung et al. [21] in their work

on RustBelt. That work developed a semantic model for a

𝜆-calculus representing a substantial subset of Rust (called

1
We use Greek letters 𝛼, 𝛽 for lifetimes, instead of 'a, 'b as Rust does.

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

𝜆Rust) and used the model to prove an extensible type sound-
ness theorem for Rust: not only does it verify that safe Rust
code has well-defined behavior, it also stipulates what verifi-

cation condition a Rust API that uses unsafe features must

satisfy in order to be deemed an observably safe extension to

the language.

The RustBelt soundness proof is formalized in the higher-

order concurrent separation logic Iris [25, 28, 23, 20], which

is mechanized in the Coq proof assistant [12] and provides

an expressive logical language for modular reasoning about

ownership and state. Using Iris, RustBelt verified type sound-

ness of 𝜆Rust, along with several representative Rust APIs

built from unsafe code, including Cell and Mutex.

Contributions. In this paper, we present RustHornBelt,
the first approach to formal verification of Rust programs

that accounts soundly for the presence of (safely encap-

sulated) unsafe code. As the name suggests, RustHornBelt

marries the benefits of RustHorn and RustBelt, providing

a semantic, RustBelt-style foundation for the soundness

of RustHorn-style verification. Specifically, RustHornBelt

extends RustBelt’s higher-order separation-logic model of

Rust types to include a RustHorn-style FOL representation

of types. It also extends RustBelt’s typing judgment to in-

clude a specification—in the form of a predicate transformer—
describing the functional behavior of the typed Rust term

with respect to the RustHorn-style representation of types.

RustHornBelt’s semantic foundation—presented at a high

level in §2 and in more detail in §3—achieves two objectives.

First of all, it provides the first machine-checked soundness

proof for RustHorn: for safe Rust code, it verifies (in Coq)

that it satisfies a RustHorn-style FOL specification. Second,

like RustBelt, it is extensible: for a Rust API R, whose imple-

mentation uses unsafe code, we cannot automatically derive

a RustHorn-style spec of its behavior—but we can choose a

particular RustHorn-style spec Φ that we wish to give to R,
and RustHornBelt will tell us what verification conditions

we must discharge (manually, in Iris) in order to prove that R
satisfies Φ. Like RustBelt, RustHornBelt is fully mechanized

in the Coq proof assistant, using the Iris framework.

In particular, we have verified RustHorn-style specs for

key Rust APIs implemented with unsafe code, including Vec
(growable array), SmallVec (Vec-like array that stores ele-

ments inline when the length is small), &𝛼 (mut) [T] (shared/
mutable slices), Iter(Mut)<𝛼,T> (shared/mutable iterators),

MaybeUninit (possibly uninitialized object), swap (swap via

mutable references), Cell (shared mutable cell), spawn/join
(thread spawning and joining), and Mutex (mutex synchro-

nizationwrapper for sharing data across threads).We present

several of these API specs in § 2.3. As one can see in our

paper’s artifact [31], we evaluated our approach by fully

mechanizing our proofs of soundness of these specs in Coq

(§4.1) and also confirmed that our API specs are useful for

(semi)-automated verification using Creusot (§4.2).

The key technical challenge we faced in RustHornBelt—

which we explore in depth in § 3—was determining how

to integrate RustHorn’s prophecy-based representation of

Rust’s mutable borrows into RustBelt. Although Jung et al.

[24] have developed an account of prophecy variables in Iris,

it is not a good fit for RustHorn-style prophecies for several

reasons: (a) it requires the program to be explicitly annotated

with prophecy-related ghost instructions; and (b) it treats a

prophecy variable name as distinct from the value it resolves

to, thus making it seemingly impossible to partially resolve a
prophecy to a value that mentions other prophesied values (a

feature we need for modeling, e.g., nested borrows and borrow
subdivision). We thus instead model RustHorn’s prophecies

via a new mechanism (encoded in Iris) we call parametric
prophecies. It alleviates all the above problems with Jung

et al.’s prophecies, so long as we embed all our RustHorn-

style specs within a reader monad, ensuring that we only

make observations about prophecy variables that hold under

all possible resolutions of those variables.

Limitations. Although RustHornBelt provides amachine-

checked semantic foundation for RustHorn-style verification

of Rust programs with unsafe code, it does not constitute

an automated verification framework in itself. One must

link it with a separate RustHorn-style verifier for safe Rust

code (e.g., Creusot), and the implementation of that verifier

remains part of the trusted computing base (TCB).

We used Creusot to confirm that our RustHorn-style specs

for internally-unsafe Rust APIs are useful for automated

verification of client programs; however, there remains a

formal gap between RustHornBelt and Creusot. First, Creusot

targets surface Rust, whereas RustHornBelt only models

𝜆Rust. Second, as it is built atopWhy3 [18], Creusot represents

RustHorn-style specs as purely functional WhyML functions

rather than (as in RustHornBelt) predicate transformers; that

said, there is a close correspondence between the two, which

we expect could be formalized in future work.

Although we have formally verified RustHorn-style specs

for various APIs, we do not cover all the APIs that were

verified safe in RustBelt. Notably, we do not provide any

specs for the APIs Rc, Arc, RefCell, and RwLock, which
implement reference and access counting. This is largely

due to a technical issue related to step-indexing, which we

discuss in §3.5 but leave as an open problem for future work.

2 Overview of RustHornBelt
In this section, we give a high-level overview of RustHorn-

Belt. We first review RustHorn’s prophecy-based translation

from Rust to FOL (§2.1), and then show how we formalize

that as the type-spec system, Rust’s type system extended

with RustHorn-style specs (§2.2). We also present RustHorn-

style specs for various Rust APIs implemented with unsafe

code, which we have verified in RustHornBelt (§2.3).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

2.1 Key Idea of RustHorn: Mutable Borrows
Expressed in FOL via Prophecies

Consider the following program:
2

fn max_mut<𝛼>(ma: &𝛼 mut int, mb: &𝛼 mut int)

-> &𝛼 mut int { if *ma >= *mb { ma } else { mb } }

fn test(mut a: Box<int>, mut b: Box<int>) {

let mc = max_mut(&mut a, &mut b);

mc += 7; / end */ assert!(abs(*a - *b) >= 7); }

What’s going on in test? First, a and b, boxed (fully owned)

pointers to integers, are taken as input. Then their integer

objects are mutably borrowed (&mut a and &mut b) under
the same lifetime (i.e., time limit of ownership rental) 𝛼 . This

createsmutable references of type &𝛼 mut int, pointers that
borrow ownership from a or b. They are passed to max_mut,
which returns the one with the larger target value mc and

drops the other. Then the target of mc is increased by 7. The

mutable borrows temporarily deprive a and b of access to

their integer object. When the lifetime 𝛼 ends, mc’s own-
ership gets expired, and a and b regain access. Finally, the

values of a and b are asserted to be different by 7 or more.

Suppose we want to verify that the assertion at the end

always succeeds. To do so, we must analyze the effect of

the update *mc += 7, where mc’s address is determined dy-
namically. Intuitively, this is tricky because whichever of

the mutable borrows of a and b stores the smaller value will

be dropped (and no longer modified) before its lifetime is

over, but this does not involve any explicit communication

between the borrower and the original owner. So how can

we reason about this communication formally?

RustHorn solved this problem using prophecies. When we

start a new mutable borrow &mut a, we prophesy the final
state of the borrow 𝑎′, peeking into the future. Importantly,

we don’t decide anything on the value 𝑎′ when we create a

borrow. Instead, we represent a mutable reference ma as the

pair (𝑎, 𝑎′) of the current state 𝑎 and the final state 𝑎′. When

a mutable reference (𝑎, 𝑎′) is dropped (i.e., its ownership
is given up), we learn 𝑎′ = 𝑎, i.e., that the final state 𝑎′ is
now set to the state at that point 𝑎 (which is called prophecy
resolution). That information can be in effect “communicated”

to the original owner, telling what is the state of the returned

object just after the end of the lifetime. This is the key idea

of RustHorn, which enables one to give FOL descriptions to

Rust programs in an elegant way.

For example, max_mut’s postcondition (input-output rela-

tion)MaxMut (𝑚𝑎,𝑚𝑏, res) can be written in FOL as follows:3

if 𝑚𝑎.1 ≥ 𝑚𝑏.1 then 𝑚𝑏.2 =𝑚𝑏.1 ∧ res =𝑚𝑎

else 𝑚𝑎.2 =𝑚𝑎.1 ∧ res =𝑚𝑏

2
For simplicity, we consider an idealized unbounded integer type int. By

managing extra preconditions for avoiding overflows, we can easily handle

realistic bounded integer types like i32 (32-bit).

3
The logic is multi-sorted. We often let a variable’s sort be implicit.

Note that the final state of the dropped reference (e.g., mb for

the first branch) is determined (e.g.,𝑚𝑏.2 =𝑚𝑏.1).

Now the verification condition for test’s assertion can

be written as the following FOL formula:

∀𝑎, 𝑏. ∀𝑎′, 𝑏 ′. ∀𝑚𝑐. MaxMut
(
(𝑎, 𝑎′), (𝑏,𝑏 ′),𝑚𝑐

)
→

𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎′ − 𝑏 ′ | ≥ 7

For the mutable borrow &mut a, we prophesy the final state

𝑎′, and represent the mutable references as a pair (𝑎, 𝑎′), and
similarly for &mut b. Since mc is dropped just after *mc +=
7, we set 𝑚𝑐.2 = 𝑚𝑐.1 + 7. Finally, the assertion after the

lifetime’s end can be described using the prophesied final

states 𝑎′, 𝑏 ′ (namely, |𝑎′ − 𝑏 ′ | ≥ 7). Indeed, the logic formula

above is true. You can check that 𝑎′ and 𝑏 ′ are always set to
the actual final state of the borrows.

Though the above example involves borrows of mere inte-

gers, RustHorn’s prophecy-based representation of mutable

borrows can be naturally extended to various use cases of

mutable borrows in Rust, such as nested borrows (e.g., &mut
&mut int) and borrow subdivision (e.g., getting &𝛼 mut int
out of &𝛼 mut List<int>), as well.

2.2 Type-Spec System: Our Formalization of
RustHorn-Style Verification

RustHornBelt provides a solid, mechanized foundation for

the soundness of RustHorn-style verification. Toward that

end, it formalizes RustHorn-style verification by means of

a type-spec system, which extends Rust’s type system (or

rather, the type system of 𝜆Rust developed in RustBelt) with

generation of RustHorn-style FOL specifications. As we de-

scribe later in §3, RustHornBelt gives a semantic proof of
soundness for this type-spec system.

Overview of the “type-spec system”. The basic judg-
ment of our type-spec system

4
is the type-spec judgment,

which extends RustBelt’s typing judgment with a specifica-

tion Φ of the instruction 𝐼 ’s behavior:

L | T ⊢ 𝐼 ⊣ r. L′ | T′ ⇝ Φ

Here, we have two type contexts T and T′
, which respec-

tively represent the state before and after executing 𝐼 . The

result of 𝐼 is bound to the variable r (we omit this part when

we ignore the result), which T′
may refer to. A type context

is a sequence of items of form either a : T or a : †𝛼 T. The
former simply means we own an object a of the type T. The
latter is more unique to Rust: it means that an object a of

type T is borrowed under the lifetime 𝛼 , and thus access to

that object via a is temporarily frozen until 𝛼 is over.

We also have the input and output (local) lifetime contexts
L and L′

, which are a set of local lifetimes (𝛼, 𝛽, · · ·) that are
alive before and after the execution of 𝐼 , respectively. (When

a lifetime context is empty, we omit it.)

4
The type-spec system we present in the paper is a simplified version of

the actual one used for Coq mechanization.

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

After⇝ comes what is new, the specification. Formally, it

is a (backward) predicate transformer Φ, of the sort (⌊T′⌋ →
Prop) → ⌊T⌋ → Prop, which calculates a precondition (of

sort ⌊T⌋ → Prop) for safe execution of 𝐼 , given a postcondi-

tion (of sort ⌊T′⌋ → Prop) that must hold after 𝐼 is executed.

The sort of a type context ⌊T⌋, in turn, is defined as the

product (heterogeneous list sort) of the sorts ⌊T⌋ of the items

a : ? T in T, where the sort ⌊T⌋ of a type T is defined as follows:
⌊int⌋ ≜ Z ⌊Box<T>⌋ ≜ ⌊T⌋

⌊&𝛼 T⌋ ≜ ⌊T⌋ ⌊&𝛼 mut T⌋ ≜ ⌊T⌋ × ⌊T⌋
Here, ⌊T⌋ describes the RustHorn-style representation of

the Rust type T. For ⌊int⌋ it is just an integer Z, and for

⌊Box<T>⌋ and ⌊&𝛼 T⌋ it refers to the representation of the

pointer’s target. The case of a mutable reference ⌊&𝛼 mut T⌋
is the interesting “prophetic” one: its representation is a pair

of the current value stored there and the final value stored
there when the lifetime of the borrow ends.

Note that, although the above definition of ⌊T⌋ represents
a frozen object in T with the same sort as an active object,

the meaning is quite different. For an active object a : T, its
representation ⌊T⌋ is simply a’s current value. For a frozen
object a : †𝛼 T, its representation ⌊T⌋ is the prophesied value

that a will have at the lifetime 𝛼 ’s end.

For a simple example, we can give the following type-spec

judgment to integer addition:
5

a : int, b : int ⊢ a + b ⊣ c. c : int ⇝ 𝜆𝛹, [𝑎, 𝑏] . 𝛹 [𝑎 + 𝑏]
It takes two integers and returns an integer. The predicate
transformer passes the output 𝑎 + 𝑏 to the postcondition𝛹;
intuitively, it is like a CPS program with the continuation𝛹.

Semantically, a type-spec judgment with spec Φ is mod-

eled as a Hoare triple over 𝐼 , which is universally quantified

over its postcondition𝛹 and uses Φ𝛹 (roughly) as its precon-

dition. For formal details, see §3.1’s (tysp-sem-0) or §3.3’s

(tysp-sem-1).

Operations formutable borrows. Let’s type and specify
basic operations for the mutable borrowing machinery.

Creation of a mutable borrow is described as follows:

mutbor

a : Box<T> ⊢ &mut a ⊣ b.

a : †𝛼 Box<T>, b : &𝛼 mut T ⇝ 𝜆𝛹,[𝑎] .∀𝑎′.𝛹 [𝑎′, (𝑎,𝑎′)]
The final state of the borrow is prophesied as a value 𝑎′, about
which we know nothing now (hence the universal quantifier).

The spec says that (1) the first argument to the postcondition

𝛹, corresponding to the frozen lender a : †𝛼 Box<T> in the

output typing context, is the final prophesied value 𝑎′ that a
will have when the borrow ends; and (2) the second argument

to 𝛹, corresponding to the borrower b : &𝛼 mut T, is the

pair of the current state 𝑎 of the borrowed object a and the

prophesied final state 𝑎′.

5
In a binder like “𝜆𝛹, [𝑎,𝑏] .” in the spec, the bracket pattern [𝑎,𝑏] simply

destructs the (heterogeneous) list of input values.

Writing to a mutable reference is type-spec’ed as follows:

mutref-write

𝛼 | b : &𝛼 mut T, c : T ⊢ *b = c ⊣ 𝛼 |
b : &𝛼 mut T ⇝ 𝜆𝛹, [𝑏, 𝑐] . 𝛹 [(𝑐, 𝑏.2)]

The mutable reference’s current state is updated to 𝑐 , but its

final state 𝑏.2 is preserved. The lifetime 𝛼 should be active.

Dropping a mutable reference is type-spec’ed as follows

(we leave the instruction empty since it is a ghost instruction

that does not appear in the Rust source program):

mutref-bye

𝛼 | b : &𝛼 mut T ⊢ ⊣ 𝛼 | ⇝ 𝜆𝛹, [𝑏] . 𝑏.2 = 𝑏.1 →𝛹 []
Here, since we are dropping b, we know that it will not be

updated any further until the lifetime 𝛼 ends, so we learn
that the final state 𝑏.2 is equal to the current state 𝑏.1.6

Expiration of a local lifetime 𝛼 , with objects borrowed

under 𝛼 getting unfrozen, is type-spec’ed as follows:

endlft

𝛼 | a : †𝛼 T ⊢ ⊣ a : T ⇝ 𝜆𝛹, 𝑎.𝛹 𝑎

This removes 𝛼 from the lifetime context and changes each

a : †𝛼 T into a : T, simply retaining their values.

Composing specs. As seen above, our type-spec system

associates each fragment of safe Rust code with a spec in the

form of a predicate transformer. We can then compose such

specs to verify the functional behavior of a program.

For example, suppose we want to verify that the assertion

of §2.1’s test always succeeds. For that, we find the overall

precondition ♠ of test and prove that ♠[𝑎, 𝑏] holds for any
inputs 𝑎, 𝑏. We can calculate ♠ backward, iteratively applying
predicate transformers to the final postcondition, just like Di-

jkstra [16]’s weakest precondition calculus. For test, we start
with the assertion assert!(abs(*a - *b) >= 7)’s condi-
tion: p ≜ 𝜆[𝑎, 𝑏] . |𝑎 − 𝑏 | ≥ 7.

First, just before the end of the lifetime, the condition stays

the same (endlft). Whenwe go back to just before the update

*mc += 7 (mutref-write), which is followed by dropping mc
(mutref-bye), we get the following new condition:

𝜆[𝑎, 𝑏,𝑚𝑐] . 𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎 − 𝑏 | ≥ 7 (♦)
Compared to p, this is weakened by𝑚𝑐.2 =𝑚𝑐.1 + 7.

Let’s go back more. First, the spec of max_mut can be de-

scribed as follows in predicate-transformer style:

𝜆𝛹,[𝑚𝑎,𝑚𝑏] . if𝑚𝑎.1 ≥ 𝑚𝑏.1 then𝑚𝑏.2 =𝑚𝑏.1 →𝛹 [𝑚𝑎]
else𝑚𝑎.2 =𝑚𝑎.1 →𝛹 [𝑚𝑏]

Let’s name this spec MaxMut∗. Now we can deduce that

the condition just before the call of max_mut is as follows

(binding the result of &mut a to𝑚𝑎 and &mut b to𝑚𝑏):

𝜆[𝑎, 𝑏,𝑚𝑎,𝑚𝑏] . MaxMut∗
(𝜆𝑚𝑐.𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎 − 𝑏 | ≥ 7) [𝑚𝑎,𝑚𝑏] (♥)

6
If you wonder why implication → appears here, recall that the predicate

transformer outputs the precondition. Given a precondition 𝑏.2 = 𝑏.1 →
𝛹 [], after we learn the equality 𝑏.2 = 𝑏.1 by prophecy resolution, we can

combine the two to get the desired postcondition𝛹 [].

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

This is obtained simply by passing the condition (♦) to the
predicate transformer MaxMut∗.
Finally, we can derive the overall precondition of test:

𝜆[𝑎, 𝑏] . ∀𝑎′, 𝑏 ′. MaxMut∗ (𝜆𝑚𝑐.

𝑚𝑐.2 =𝑚𝑐.1 + 7 → |𝑎′ − 𝑏 ′ | ≥ 7) [(𝑎, 𝑎′), (𝑏, 𝑏 ′)] (♠)

This is calculated from the previous condition (♥) as follows
(by mutbor): ♠[𝑎, 𝑏] ≜ ∀𝑎′, 𝑏 ′. ♥[𝑎′, 𝑏 ′, (𝑎, 𝑎′), (𝑏,𝑏 ′)].

This precondition simplifies to the following:

if𝑎 ≥ 𝑏 then | (𝑎 + 7) − 𝑏 | ≥ 7 else |𝑎 − (𝑏 + 7) | ≥ 7

Logic solvers can fairly easily prove that this condition holds

for all 𝑎 and 𝑏 by case analysis on 𝑎 ≥ 𝑏, thereby establishing

that the assertion of §2.1’s test always succeeds.

2.3 Rust APIs with Unsafe Code
So far we discussed Rust’s safe features. Now we present

RustHorn-style specs for various Rust APIs with unsafe im-

plementations, which we have verified in RustHornBelt.

Vec API. One common use of unsafe code in Rust APIs

is to provide a more efficient implementation than Rust’s

safe typing rules allow. A canonical example of this is the

ubiquitous vector (or growable array) type Vec<T>. The Vec
API manages a dynamically allocated memory block to store

and provide access to an unbounded number of objects of the

type T, which it achieves through effective use of raw pointers.
Raw pointers are Rust pointers whose aliasing is untracked

by the type system and which are therefore potentially un-

safe to use. The Vec API supports a variety of operations; for
RustHorn-style verification, we are particularly interested

in those that perform destructive state mutation.
First, let’s consider the following operations:

fn push<T>(v: &mut Vec<T>, a: T)

fn pop<T>(v: &mut Vec<T>) -> Option<T>

They both destructively update a vector through a mutable
reference v: &mut Vec<T> to it. The operation push adds an
element a: T to the end of the vector (and returns nothing),

and pop removes the last element a from the vector, returning

Some(a) (and None if the vector is empty).

Before we can describe the behavior of these operations,

we must first choose a representation for the type Vec<T>.
Naturally, we represent a vector as a list of its contents:

⌊Vec<T>⌋ ≜ List ⌊T⌋. Correspondingly, the push and pop
operations get the following specs:

𝑣 .2 = 𝑣 .1 ++ [𝑎] → 𝛹 []
if 𝑣 .1 = [] then 𝑣 .2 = [] → 𝛹 [None]

else 𝑣 .2 = init 𝑣 .1 → 𝛹 [Some(last 𝑣 .1)]
where init𝑤 is the list𝑤 without its last item, and last𝑤 is

the last item of𝑤 . In the case of both functions, 𝑣 .1 represents

the initial state of the mutable reference v; and since v is

dropped before the function returns, we also learn that the

prophesied “final” value of v (i.e., 𝑣 .2) is precisely the state

of v at the end of the function. Thus, so far, 𝑣 .1 and 𝑣 .2 act

pretty much like just an input and output.

Things get more interesting when an operation not only

inputs but also outputs a mutable reference. Let’s consider

the following operation for random access:

fn index_mut<𝛼,T>(v: &𝛼 mut Vec<T>, i: int)

-> &𝛼 mut T

Physically, it is just address calculation: get the head address

of the buffer of a vector and add the offset of 𝑖 blocks. In

Rust, however, such addresses are linked with ownership. In
index_mut, the mutable borrow over a vector is subdivided
into a smaller borrow over a specific element of the vector,

inheriting the lifetime 𝛼 .

We give to index_mut the following RustHorn-style spec:

0 ≤ 𝑖 < |𝑣 .1| ∧ ∀𝑎′. 𝑣 .2 = 𝑣 .1{𝑖 B 𝑎′} →𝛹 [(𝑣 .1[𝑖], 𝑎′)]

The precondition 0 ≤ 𝑖 < |𝑣 .1| is for the bounds check. In
addition, we prophesy the final state 𝑎′ of the new, subdivided
borrow for the output. Now the old borrow’s prophesied final

state 𝑣 .2 is partially determined with respect to 𝑎′ (an ex-

ample of partial prophecy resolution). It is set to 𝑣 .1{𝑖 B 𝑎′},
which can be read as 𝑣 .1 with the 𝑖-th element’s determina-

tion left to the prophesied value 𝑎′.

IterMut API. Rust’s IterMut API for mutable iterators—
though implemented with unsafe code—exemplifies how

Rust’s type system actually provides stronger guarantees

than those of “safe” languages like Java, leveraging owner-

ship to eliminate common pitfalls like iterator invalidation.
With iter_mut, you can create a mutable iterator out of

a mutable reference to a vector:

fn iter_mut<𝛼,T>(v: &𝛼 mut Vec<T>) -> IterMut<𝛼,T>

As the lifetime parameter 𝛼 of IterMut indicates, a mutable

iterator is an advanced form of mutable borrow, having tem-

porary ownership of some memory sequence. Rust’s type

system ensures that, while the iterator IterMut<𝛼,T> is ac-

tive, the ownership of the iterated vector is frozen, prevent-

ing the vector from being modified while it is being iterated

over—a phenomenon known as iterator invalidation.

With next, you can perform one step of mutable iteration:

fn next<𝛼,T>(it: &mut IterMut<𝛼,T>)

-> Option<&𝛼 mut T>

This yields a mutable reference to the head element a: &𝛼
mut T, moving the focus to the next element and returning

Some(a) (or None if the iterator has reached the end).

With iterated application of next, it is possible to convert

the mutable iterator into a bunch of mutable references to

the individual elements of the vector, which can all be used

simultaneously—i.e., one need not give up the mutable refer-

ence to one element to obtain a mutable reference to the next.

Hence, in RustHornBelt, we naturally represent a mutable

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

iterator as a list of mutable references to each element of the it-

erated container, setting ⌊IterMut<𝛼,T>⌋ ≜ List (⌊T⌋× ⌊T⌋).
This leads to the following straightforward spec for next:

if it .1 = [] then it .2 = [] → 𝛹 [None]
else it .2 = tail it .1 → 𝛹 [Some(head it .1)]

We can also give the following spec to iter_mut, which
might look tricky at first:

|𝑣 .2| = |𝑣 .1| → 𝛹 [zip 𝑣 .1 𝑣 .2]
Essentially, what we are doing is an elementwise split of
the mutable borrow over the vector (one example of borrow
subdivision, like Vec’s index_mut). The borrow’s final state
𝑣 .2 is split elementwise into a list of prophesied values 𝑣 .2[0],
𝑣 .2[1], · · · , 𝑣 .2[|𝑣 .1| − 1], and the length (|𝑣 .2| = |𝑣 .1|) is
guaranteed to stay constant. The output iterator works as

if it were a list of mutable references to each element of the

vector. The function zip works like zip [𝑎, 𝑏, 𝑐] [𝑎′, 𝑏 ′, 𝑐 ′] =
[(𝑎, 𝑎′), (𝑏,𝑏 ′), (𝑐, 𝑐 ′)].
Combining iter_mut and next, we can write and func-

tionally verify various programs that iteratively mutate vec-

tors. For example, let’s consider the following function:

fn inc_vec(v: &mut Vec<int>)

{ for a in v.iter_mut() { *a += 7; } }

This uses a mutable iterator, v.iter_mut(), to increment

each element of the vector *v by 7. The for statement is

syntactic sugar for repeatedly calling the next method and

unwrapping the result to get a: &mut int until None is re-
turned. Using the specs of iter_mut and next, we can derive
the following spec on inc_vec: 𝑣 .2 = map (+ 7) 𝑣 .1 →𝛹 [].

SmallVec API. The small-vector type SmallVec<T,𝑛>7

acts like a vector Vec<T> but uses a trickier memory layout

for performance. When the number of the elements is no

more than𝑛, it stores all the elements inline, behaving like an

array [T;𝑘] (array mode). When the number of the elements

gets larger, it spills out all the elements into the heap, just

like a vector Vec<T> (vector mode).
The SmallVec API supports all the key methods of the

Vec API—including push, pop, index_mut and iter_mut. In-
terestingly, the functional specs for these SmallVec meth-

ods are exactly the same as the specs for their Vec coun-

terparts. A small-vector is represented as a list of values

(⌊SmallVec<T,𝑛>⌋ ≜ List ⌊T⌋), regardless of the internal

memory layout (array mode or vector mode). As we can see

here, RustHorn-style verification can abstract away represen-

tation details and focus on observable functional properties.

Cell API. Though useful for avoiding memory safety

bugs and data races, Rust’s prohibition of aliased mutable

state is too restrictive in many situations, such as implement-

ing cyclic data structures. To meet such needs, Rust also

provides a number of APIs with interior mutability, meaning

7
The actual notation used by the Rust library is SmallVec<[T;𝑛]>.

that they allow mutation even through a shared reference,

albeit in carefully controlled ways.

Arguably the simplest such API is Cell, whose safety is

guaranteed by various restrictions (e.g., it can only be used

within a single thread). It provides the following operations:

fn new<T>(a: T) -> Cell<T>

fn get<T: Copy>(c: &Cell<T>) -> T

fn set<T>(c: &Cell<T>, a: T)

You can convert a T to a cell Cell<T> by calling new. Then,
using a shared reference to a cell &Cell<T> with copyable
content, you can both read from the cell by get and write a

new value to the cell by set.
Such interior mutability is useful for writing code but

makes functional verification (especially in the RustHorn

style) more challenging. RustHornBelt proposes one simple

approach to solve this problem: invariants.
Concretely, we represent Cell<T> as an invariant predi-

cate, with ⌊Cell<T>⌋ ≜ ⌊T⌋ → Prop. For get, we know that

the read value 𝑎 satisfies the invariant, which amounts to

the following spec: ∀𝑎. 𝑐 (𝑎) →𝛹 [𝑎], where 𝑐 is the invari-
ant representing the cell, of sort ⌊T⌋ → Prop. For set, we
promise that writing to the cell will preserve the invariant,

hence the following spec: 𝑐 (𝑎) ∧𝛹 []. For new, we can choose

the cell’s invariant𝛷 , which should be satisfied by the initial

value of the cell. Thus, we give new the following spec, for
any𝛷 :𝛷 (𝑎) ∧𝛹 [𝛷].

Using these specs, we can do some functional verification.

For example, let’s consider the following function:

fn inc_cell(c: &Cell<int>, i: int)

{ c.set(c.get() + i); }

We should ensure that the update by set does not invalidate
the cell’s invariant. That is satisfied by giving the following

spec to inc_cell:
(
∀𝑛. 𝑐 (𝑛) → 𝑐 (𝑛 + 𝑖)

)
∧ 𝛹 []. What comes

before ∧ is the main precondition, which is satisfied if, for

example, 𝑐 = 𝜆𝑛. (𝑛 is odd) and 𝑖 = 4.

RustHornBelt allows the invariant𝛷 for a cell to depend

on runtime values. For example, we can call inc_cell with

the invariant 𝜆𝑛. 𝑛 mod 𝑘 = 1, where 𝑘 represents another

program variable k : int. For technical reasons, we restrict
this dependency to non-prophesied values: we cannot choose

an invariant that depends on the prophecy of a mutable

borrow. This is not a strong limitation: as we explain in §4,

one practical use case of Cell is memoization, which does

not require to lift this restriction.

Finally, we have also proven sound similar invariant-based

specs for the Mutex API, a thread-safe variant of Cell which
uses a lock to control mutable access to the shared cell.

3 Proving Semantic Soundness of the
Type-Spec System

We now proceed to explain how we prove semantic sound-
ness of our type-spec system. After outlining our semantic

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

approach (§3.1), we present our a new prophecy framework

parametric prophecies (§ 3.2) and show how we use it to

solve to the key challenge, modeling mutable borrows in the

RustHorn style (§3.3). We then sketch the soundness proofs

of several type-spec rules (§3.4), before concluding by briefly

discussing a technical issue concerning step-indexing (§3.5).

3.1 Basics of Our Semantic Approach
RustBelt’s approach. Inspired by earlier work on Foun-

dational Proof-Carrying Code [4, 5, 2, 3], RustBelt proved

soundness of Rust (or, to be precise, a simplified variant of

Rust called 𝜆Rust) by building a semantic model of its type sys-
tem. In particular, this semantic model modeled Rust types

as predicates in Iris, an expressive separation logic. We begin

by reviewing the big picture of how this works.

First, each Rust type T is associated with an ownership
predicate JTK(𝑡,v), a separation-logic predicate in Iris that

semantically models what it means to own an object of the

type T.8 The predicate takes low-level data v ∈ List LowVal
(a sequence of values like location/address ℓ , integer 𝑛, etc.)

as well as a thread identifier 𝑡 ∈ ThrId (for modeling concur-

rency). Then, using ownership predicates, RustBelt gives a

semantic model to judgments of Rust’s type system.

Finally, RustBelt semantically interprets Rust’s syntactic

typing rules and proves each of them as a separate lemma in

Iris. This amounts to Rust’s semantic type soundness (called
the fundamental theorem of logical relations). The proof is
extensible: when you add a new typing rule, all you need

is to prove the new rule’s semantic interpretation. Notably,

this approach can flexibly support various safe Rust APIs

implemented with unsafe code (like those discussed in §2.3),

by formulating each safe API as a set of new typing rules.

The semantics is validated by the adequacy theorem, which

says that a complete (i.e., closed) and semantically well-typed

Rust program will never encounter undefined behavior (for-

malized as a “stuck state”) under any execution trace.

RustHornBelt’s first step. Our work, RustHornBelt, ex-
tends RustBelt’s approach to tackle soundness of the type-

spec system, proving functional correctness beyond mere

safety. Before diving into our full model, we first show a

simplified model, which we evolve further in §3.3 and §3.5.

First, the ownership predicate has the form JTK(𝑎, 𝑡,v),
extending the original RustBelt ownership predicate with

a representation value 𝑎 ∈ ⌊T⌋, which is used for RustHorn-

style verification. In the (trivial) case of the integer type int,
this representation value precisely matches the underlying

physical value:
9

JintK(𝑛, _, [𝑚]) ≜ 𝑛 =𝑚

8
Each Rust type T is also given a sharing predicate, which amounts to the

ownership predicate of &𝛼 T, but we omit the details here for space reasons.

9
It is defined to be False for cases where the low-level data is not of the

form [𝑚] (e.g., [ℓ, ℓ′]). The same reading applies to other definitions.

More interesting is the case of boxed pointers (Box<T>):

JBox<T>K(𝑎, 𝑡, [ℓ]) ≜ ∃v.
ℓ ↦→ v ∗ Dealloc(ℓ, |T|) ∗ ⊲JTK(𝑎, 𝑡,v)

A boxed pointer fully owns the memory block at ℓ (along

with the right to deallocate it; |T| is the size of the low-level
data for T, equal to |v |), and also owns the target object (via

the target type T’s ownership predicate). The target object

ownership is protected by a later modality ⊲—discussed more

in § 3.5—which acts as a kind of “guard” so that one can

soundly define general recursive types such as:

enum List<T>{ Cons(T, Box<List<T>>), Nil }

The high-level point to take away concerning the above

model of Box<T> is that it is the same as in RustBelt but for

the threading through of the parameter 𝑎.

We are now ready to define a simplified version of the

semantics of our type-spec judgment, as follows:

J L | T ⊢ 𝐼 ⊣ r. L′ | T′ ⇝ Φ K ≜

∀𝛹, 𝑡 .
{
∃𝑎. Φ𝛹 𝑎 ∗ JLK ∗ JTK(𝑎, 𝑡)

}
𝐼
{
r. ∃𝑏. 𝛹 𝑏 ∗ JL′K ∗ JT′K(𝑏, 𝑡)

} (tysp-sem-0)

It is basically a Hoare triple over the instruction 𝐼 . We quan-

tify over an arbitrary postcondition 𝛹. The output objects’
values 𝑏 should satisfy 𝛹, and the input objects’ values 𝑎

should satisfy Φ𝛹, the precondition calculated by the predi-

cate transformer Φ. The semantics of a type context JTK(𝑎, 𝑡)
is simply the separating conjunction of each object’s seman-

tics Ja : ? TK(𝑎, 𝑡). For an active object a : T, the semantics is

JTK(𝑎, 𝑡, a). We give the semantics of frozen objects in §3.3.

3.2 Our Key Innovation: Parametric Prophecies
Background. One of the major challenges tackled by

RustBelt was building a semantic model of Rust’s mutable

and shared borrows. Toward this end, RustBelt relied on a

new “logical API” (which was derived within Iris) called the

lifetime logic, which made it possible to define the model of

Rust borrows at amuch higher level of abstraction. Inheriting

the infrastructure of RustBelt, we too rely on the lifetime

logic in our model of borrows (as we will explain in §3.3).

But RustHornBelt faces an additional challenge in model-

ing mutable borrows in particular, namely figuring out how

to account semantically for RustHorn-style prophecies. To
understand the challenge, consider what happens when we

try to prove soundness of rule mutbor for creation of a mu-

table borrow. We will see the proof in detail later in §3.3, but

roughly, following the structure of (tysp-sem-0), the proof

goal will look something like{
(∀𝑎′.𝛹 [𝑎′, (𝑎, 𝑎′)]) ∗ JBox<T>K(𝑎, 𝑡, a)

}
&mut a

{
b. ∃𝑎′. 𝛹 [𝑎′, (𝑎, 𝑎′)] ∗

Ja : †𝛼 Box<T>K(𝑎′, 𝑡) ∗ J&𝛼 mut TK((𝑎, 𝑎′), 𝑡, b)
}

where 𝑎 and 𝑎′ represent the current and (prophesied) final
states of the borrow, respectively. The problem here is that, to

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

establish the post, we need to pick some instantiation for the

(existentially quantified) final state 𝑎′. How can we do this?

We clearly cannot just pick some random value: that would

mean committing up front to what the final state will be,

which would prevent us from later resolving the prophecy to

a potentially different value when the borrow is eventually

dropped (rule mutref-bye). Disaster!

Our solution. To solve this, we have developed a novel

prophecy framework in Iris, called parametric prophecies.
Its key idea is to consider all possible futures simultaneously.
This is achieved through the clairvoyant monad Clair 𝐴 ≜
ProphAsn → 𝐴, a reader monad over a prophecy assignment
𝜋 ∈ ProphAsn modeling one possible future (i.e., mapping

of prophecy variables to values). By embedding our rea-

soning about prophecies (especially the spec Φ) within this

monad—i.e., parameterizing over every future 𝜋—we can refer
to prophesied values while staying parametric w.r.t. what

they actually are until we are ready to resolve them. In partic-

ular, returning to the proof of mutbor, parametric prophecies

will enable us to instantiate𝑎′with a freshly chosen prophecy
variable in the domain of 𝜋 , without having to commit to

how it is resolved until the borrow is dropped.

Basics. Formally, let a prophecy (variable) 𝑥 ∈ ProphVar𝐴
be simply a wrapper around a natural number 𝑛 ∈ N. As
ProphVar 𝐴 is infinite, we can at any point create a prophecy
token [𝑥]1 for a fresh prophecy 𝑥 . This token signifies that 𝑥

has not yet been resolved. Ownership of prophecy tokens

can be fractionally split and merged:

proph-intro

True ⇛ ∃𝑥 . [𝑥]1
proph-frac

[𝑥]𝑞+𝑞′ ⊣⊢ [𝑥]𝑞 ∗ [𝑥]𝑞′

A prophecy assignment 𝜋 ∈ ProphAsn, modeling one pos-

sible future, is a map that assigns a value 𝜋 𝑥 ∈ 𝐴 to every

prophecy 𝑥 ∈ ProphVar 𝐴 for any sort 𝐴. Now we have the

clairvoyant monad Clair 𝐴 ≜ ProphAsn → 𝐴, parameteriza-

tion over every future 𝜋 . A prophecy 𝑥 ∈ ProphVar 𝐴 lifts to

a clairvoyant value ↑𝑥 ≜ 𝜆𝜋 . 𝜋 𝑥 (∈ Clair 𝐴).
We mark clairvoyant values (i.e., values of sort Clair 𝐴)

with a hat ˆ (e.g., 𝑎). Also, we use the following functorial
notations with a star

★
:
ˆ𝜙 ★∧ ˆ𝜓 ≜ 𝜆𝜋 . ˆ𝜙 𝜋 ∧ ˆ𝜓 𝜋 , 𝑎 ★= ˆ𝑏 ≜

𝜆𝜋 . 𝑎 𝜋 = ˆ𝑏 𝜋 , 𝑝★.1 ≜ 𝜆𝜋 . (𝑝 𝜋) .1 (similarly for
★.2), ★(𝑎, ˆ𝑏) ≜

𝜆𝜋 . (𝑎 𝜋, ˆ𝑏 𝜋), and ★[𝑎1, . . . , 𝑎𝑛] ≜ 𝜆𝜋 . [𝑎1 𝜋, . . . , 𝑎𝑛 𝜋].
For prophetic reasoning, we introduce a prophecy obser-

vation ⟨ ˆ𝜙 ⟩ (where ˆ𝜙 ∈ Clair Prop), which asserts that a pure

proposition
ˆ𝜙 𝜋 holds for every valid future 𝜋 (i.e., for every

𝜋 that respects the prophecy resolutions that have occurred

so far). The rules for reasoning about observations are fairly

straightforward:

proph-impl

∀𝜋. ˆ𝜙 𝜋 → ˆ𝜓 𝜋

⟨ ˆ𝜙 ⟩ ⊢ ⟨ ˆ𝜓 ⟩

proph-merge

⟨ ˆ𝜙 ⟩ ∗ ⟨ ˆ𝜓 ⟩ ⊢ ⟨ ˆ𝜙 ★∧ ˆ𝜓 ⟩

proph-true

∀𝜋. ˆ𝜙 𝜋

⟨ ˆ𝜙 ⟩

Prophecy resolution. For each prophecy 𝑥 , we can re-
solve it exactly once:

10

proph-resolve

dep(𝑎,𝑌)
[𝑥]1 ∗ [𝑌]𝑞 ⇛ ⟨↑𝑥 ★= 𝑎⟩ ∗ [𝑌]𝑞

Consuming the full token [𝑥]1, we can finally fix the value

of the prophecy 𝑥 to an arbitrary clairvoyant value 𝑎, getting

an observational equality: ⟨↑𝑥 ★= 𝑎⟩. Internally, we prune
away all the futures in which 𝑥 is not equal to 𝑎.

Notably, the rule proph-resolve allows the clairvoyant

value 𝑎 to depend on other prophecies (the ones in the set

𝑌). This is essential in RustHornBelt for modeling borrow
subdivision. For example, let’s consider Vec’s index_mut
(§2.3). It subdivides the input mutable reference to the vec-

tor v : &𝛼 mut Vec<T> into the output mutable reference to

the 𝑖-th element &mut T. For this subdivision, the input’s

prophecy 𝑥 should be partially resolved to a value depending

on the newly created prophecy 𝑦 for the output, observ-

ing ⟨↑𝑥 ★= ★[. . . , 𝑎𝑖−1, ↑𝑦, 𝑎𝑖+1, . . .] ⟩, where 𝑎𝑘 is the current

value of the vector’s 𝑘-th element.

Crucially, however, proph-resolve also imposes the con-

dition that the prophecies in the finite set 𝑌 (i.e., the ones 𝑎
depends on) must all be unresolved.11 This is ensured by con-

suming (and then immediately returning) fractional tokens

for the prophecies in 𝑌—i.e., [𝑌]𝑞 ≜ ∗𝑦∈𝑌 [𝑦]𝑞 . The reason
we need this condition is to prevent prophecy resolution

from causing a paradox where there are no valid futures.

To see how this might happen, suppose we have [𝑥]1 and
[𝑦]1; if proph-resolve did not impose the “[𝑌]𝑞” condition,
we could use it to first resolve 𝑥 to ↑𝑦, and then resolve 𝑦

to 𝜆𝜋 . ↑𝑥 𝜋 + 1, which put together would yield the impos-

sible observation ⟨↑𝑥 ★= 𝜆𝜋 . ↑𝑥 𝜋 + 1⟩. Thanks to the “[𝑌]𝑞”
condition, however, such a paradox is ruled out.

One important consequence of this paradox avoidance

is that we are able to additionally prove the following rule,

which establishes that reasoning in the clairvoyant monad

remains consistent (i.e., there always exists some valid 𝜋

under which our observations hold):

proph-sat

⟨ ˆ𝜙 ⟩ ⇛ ∃𝜋. ˆ𝜙 𝜋

In essence, proph-sat says that we can escape the clairvoy-

ant monad and convert our prophetic observation into a

“ground” assertion (of type Prop) when needed. Concretely,

one key place where this rule is fundamentally needed is in

proving that certain branches of a proof or program are im-

possible (e.g., to prove that assert!(false) or panic! are
dead code). In such cases, our prophetic reasoning will get

us to a point where we have proven a contradiction within

10
The view shift 𝑃 ⇛ 𝑄 means that a resource of 𝑃 turns into a resource

of𝑄 by updating the internal state. It actually takes a “mask” parameter E,
but we elide this detail in the paper to reduce noise.

11
Here, the predicate finding the dependencies dep(𝑎,𝑌) is defined as

dep(𝑎,𝑌) ≜ ∀𝜋, 𝜋 ′. (∀𝑧 ∈ 𝑌 . 𝜋 𝑧 = 𝜋 ′ 𝑧) → 𝑎 𝜋 = 𝑎 𝜋 ′
.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

the clairvoyant monad (i.e., ⟨𝜆_. False⟩), but in order to com-

plete the proof we need to obtain a bona fide contradiction
(i.e., to prove False outside the monad); proph-sat lets us do

precisely that by converting ⟨𝜆_. False⟩ to False.

3.3 RustHornBelt’s Model of Mutable Borrows
Review of RustBelt’s “lifetime logic”. As mentioned in

§3.2, in RustHornBelt we inherit RustBelt’s use of the lifetime
logic for modeling Rust borrows. Let’s briefly review the

lifetime logic (see the RustBelt’s paper for details; we didn’t

change the lifetime logic itself). The central mechanism of

the lifetime logic is the borrow proposition &
𝛼 𝑃 (specifically

called a full borrow), which reflects temporary ownership of

the Iris proposition 𝑃 but only during the lifetime 𝛼 . Two

selected lemmas about &
𝛼 𝑃 :12

LftL-borrow

⊲ 𝑃 ⇛ &
𝛼 𝑃 ∗

(
[†𝛼] ⊲ 𝑃

)
LftL-bor-acc

&
𝛼 𝑃 ∗ [𝛼]𝑞 ⇛ ⊲ 𝑃 ∗

(
⊲ 𝑃 &

𝛼 𝑃 ∗ [𝛼]𝑞
)

Depositing ⊲ 𝑃 , we can create a borrow proposition &
𝛼 𝑃

along with the “inheritance” [†𝛼] ⊲ 𝑃 , which says that

we can retrieve ⊲ 𝑃 once 𝛼 has ended (where the death of 𝛼

is signaled by a dead lifetime token [†𝛼]). With &
𝛼 𝑃 in hand,

we can get temporary access to its content ⊲ 𝑃 by trading in

a fractional lifetime token [𝛼]𝑞 , which ensures that 𝛼 is still

alive (in the same way the prophecy token [𝑥]𝑞 ensures that

𝑥 has not yet been resolved). Remarkably, these lemmas work

for any Iris proposition 𝑃 , which exemplifies Iris’s higher-
order expressivity and is crucial for modeling Rust types.

The cost of this expressivity, however, is that 𝑃 must be put

under a later ⊲, which creates technical difficulties (see §3.5).

Given the lifetime logic, RustBelt models themutable refer-
ence type &𝛼 mut T simply as follows: J&𝛼 mut TK(𝑡, [ℓ]) ≜
&
𝛼
(
∃v. ℓ ↦→ v ∗ JTK(𝑡,v)

)
. It is a borrow proposition whose

content describes ownership of some low-level data v stored

at ℓ . Correspondingly, a frozen object a : †𝛼 T is modeled as

the object’s inheritance: Ja : †𝛼 TK(𝑡) ≜ [†𝛼] JTK(𝑡, a).
This enables the lender of a borrow (i.e., owner of the frozen
object) to unfreeze the object once it can prove 𝛼 is dead.

Lastly, the lifetime context’s semantics JLK is defined as the
iterated separating conjunction of a token [𝛼]1 (knowledge
that 𝛼 is alive) and the proposition [𝛼]1 [†𝛼] (the ability
to end 𝛼) over all 𝛼 in L.13

RustHornBelt’s model of mutable borrows. With the

lifetime logic and parametric prophecies in hand, we are now

ready to model mutable borrows in the RustHorn style.

First, we update the RustHornBelt ownership predicate

into the form JTK(𝑎, 𝑡,v), where the first parameter is now a

clairvoyant representation value 𝑎 ∈ Clair ⌊T⌋ rather than
an inhabitant of ⌊T⌋. The ownership predicate for Box<T>

12
The view-shift wand 𝑃 𝑄 denotes a resource 𝑅 satisfying the view

shift 𝑅 ∗ 𝑃 ⇛ 𝑄 . Again we elide the mask parameter E.
13

To be precise, the wand actually takes a later: [𝛼]1 ⊲ |⇛ [†𝛼].

doesn’t change (just 𝑎 is used instead of 𝑎). For int, we have
a slight update: JintK(�̂�, _, [𝑚]) ≜ �̂� = 𝜆_.𝑚.

We also update the semantics of the type-spec judgment

J L | T ⊢ 𝐼 ⊣ r. L′ | T′ ⇝ Φ K as follows, using clairvoyant

values 𝑎, ˆ𝑏 and prophecy observations ⟨𝜆𝜋 . · · ·⟩:

∀�̂�, 𝑡 .
{
∃𝑎. ⟨𝜆𝜋 .Φ (�̂� 𝜋) (𝑎 𝜋) ⟩ ∗ JLK ∗ JTK(𝑎, 𝑡)

}
𝐼
{
r. ∃ ˆ𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) (ˆ𝑏 𝜋) ⟩ ∗ JL′K ∗ JT′K(ˆ𝑏, 𝑡)

}
(tysp-sem-1)

Now for the pièce de résistance, we model &𝛼 mut T, the
type of mutable references, as follows:

J&𝛼 mut TK(𝑝, 𝑡, [ℓ]) ≜ ∃ 𝑥 s.t. 𝑝★.2 = ↑𝑥 .
VO𝑥 (𝑝★.1) ∗ &

𝛼
(
∃𝑎,v. ℓ ↦→ v ∗ JTK(𝑎, 𝑡,v) ∗ PC𝑥 (𝑎)

)
There is a lot going on here. First of all, as expected, the

RustHorn-style representation 𝑝 of a mutable reference is a

clairvoyant pair of the current and final states of the borrow,

where the latter is some prophecy 𝑥 (hence, 𝑝★.2 = ↑𝑥).
The other key difference from the RustBelt model of mu-

table references is the presence of two ghost state asser-

tions: the value observer VO𝑥 (𝑝★.1) and the prophecy con-
troller PC𝑥 (𝑎). The purpose of these assertions is to make it

possible to refer to the current state of the borrow both inside
and outside of the borrow proposition. In particular, note that,

on the one hand, we need to existentially quantify over that

current state inside the borrow proposition because other-

wise the borrower would not be able to change it when they

mutate ℓ ; but on the other hand, we also need to be able to

connect the current state to the first component of the rep-

resentation value 𝑝★.1. The VO and PC assertions make this

possible using a fairly typical Iris-style “linked ghost state”

construction, whereby two separately ownable propositions

can independently assert the identity of some shared state,

with the assurance that (a) their assertions must agree and

(b) they can be updated, but only jointly. Formally, we have:

mut-agree

VO𝑥 (𝑎) ∗ PC𝑥 (𝑎′) ⊢ 𝑎 = 𝑎′

mut-update

VO𝑥 (𝑎) ∗ PC𝑥 (𝑎) ⇛ VO𝑥 (𝑎′) ∗ PC𝑥 (𝑎′)

Finally, we model a borrowed, frozen object a : †𝛼 T as:

Ja : †𝛼 TK(ˆ𝑏, 𝑡) ≜ [†𝛼] ∃𝑎. ⟨ ˆ𝑏 ★= 𝑎⟩ ∗ JTK(𝑎, 𝑡, a)

After the end of 𝛼 , we get back ownership of the object of

type T, whose actual value is 𝑎, together with the knowl-

edge that the prophesied value
ˆ𝑏 (typically of the form ↑𝑥) is

equivalent to 𝑎, via the prophecy observation ⟨ ˆ𝑏 ★= 𝑎⟩.14

14
This model is a bit simplified for presentation. Instead of an observational

equality ⟨ ˆ𝑏 ★= 𝑎 ⟩, we actually get ⊲ ˆ𝑏 :≈ 𝑎, where a prophecy equalizer
ˆ𝑏 :≈ 𝑎 is what becomes an observational equality once we get a token of

𝑎’s dependencies, i.e., ∀𝑌 s.t. dep(𝑎,𝑌) . ∀𝑞. [𝑌]𝑞 ⟨ ˆ𝑏 ★= 𝑎 ⟩ ∗ [𝑌]𝑞 .

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

3.4 Proving Soundness of Type-Spec Rules
With our model in hand, let us now sketch the proofs of a

few key type-spec rules for mutable borrowing.

Borrow creation. First, let’s tackle creation of a mutable

borrow (mutbor). Unfolding the semantics of the type-spec

judgment, we reach the following Hoare-triple goal (for any

input value 𝑎, postcondition �̂�, and thread 𝑡):{
⟨𝜆𝜋 . ∀𝑎′. (�̂� 𝜋) [𝑎′, (𝑎 𝜋, 𝑎′)] ⟩ ∗ JBox<T>K(𝑎, 𝑡, a)

}
&mut a

{
b. ∃ 𝑐, ˆ𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) [𝑐 𝜋, ˆ𝑏 𝜋] ⟩ ∗
Ja : †𝛼 Box<T>K(𝑐, 𝑡) ∗ J&𝛼 mut TK(ˆ𝑏, 𝑡, b)

}
The operation &mut a just returns the location a, so actually
b ≜ a. The proof goes as follows.
First, we create a prophecy 𝑥 and get the value observer

VO𝑥 (𝑎) and the prophecy controller PC𝑥 (𝑎) for 𝑥 :
mut-intro

True ⇛ ∃𝑥 . VO𝑥 (𝑎) ∗ PC𝑥 (𝑎)

Pick 𝑐 ≜ ↑𝑥 and
ˆ𝑏 ≜ ★(𝑎, ↑𝑥). From the input observation we

immediately get the output observation, simply by instanti-

ating 𝑎′ into the prophecy’s value ↑𝑥 𝜋 :

⟨𝜆𝜋 . ∀𝑎′. (�̂� 𝜋) [𝑎′, (𝑎 𝜋, 𝑎′)] ⟩ ⊢ ⟨𝜆𝜋 . (�̂� 𝜋) [𝑐 𝜋, ˆ𝑏 𝜋] ⟩

We then unfold the model of JBox<T>K(𝑎, 𝑡, a) to get:

a ↦→ v ∗ Dealloc(a, |T|) ∗ ⊲JTK(𝑎, 𝑡,v)

And let 𝑃 be ∃𝑎′, v. a ↦→ v ∗ JTK(𝑎′, 𝑡,v) ∗ PC𝑥 (𝑎′).
By LftL-borrow, constructing and depositing ⊲ 𝑃 , we cre-

ate a borrow proposition &
𝛼 𝑃 and its inheritance [†𝛼]

⊲ 𝑃 . Now we have all we need to construct the required re-

sources for the mutable reference b:

VO𝑥 (𝑎) ∗ &
𝛼 𝑃 ⊢ J&𝛼 mut TK

(
★(𝑎, ↑𝑥), 𝑡, b

)
We use the remaining resources for the frozen box:

([†𝛼] ⊲ 𝑃) ∗ Dealloc(a, |T|) ⊢ Ja : †𝛼 Box<T>K(↑𝑥, 𝑡)

The frozen box is unfolded into [†𝛼] ∃𝑎′. ⟨ ˆ↑𝑥 ★= 𝑎′⟩ ∗
JBox<T>K(𝑎′, 𝑡, a). To prove this, we “execute” the given view-
shift wand with [†𝛼] to get ⊲ 𝑃 . Take out the value 𝑎′ out of 𝑃 .
Consuming PC𝑥 (𝑎′) inside 𝑃 , we get the desired ⟨↑𝑥 ★= 𝑎′⟩.
Using the remaining parts of 𝑃 and Dealloc(a, |T|), we can
construct the box.

Write. To write to a mutable reference *b = c (mutref-
write), we get access to the borrow proposition’s content by

LftL-bor-acc and actually update it, and accordingly renew

the observed current state by mut-update.

Borrow dropping. Consider dropping of a mutable refer-

ence (mutref-bye). First, by LftL-bor-acc, we get temporary

access to the borrow proposition’s content, which contains

the prophecy controller PC𝑥 (𝑎). We then use the following

ghost update rule to resolve the prophecy 𝑥 , disposing of the

value observer in the process (as we should only be able to

resolve once!):

mut-resolve

dep(𝑎,𝑌)
VO𝑥 (𝑎) ∗ PC𝑥 (𝑎) ∗ [𝑌]𝑞 ⇛ ⟨↑𝑥 ★= 𝑎⟩ ∗ PC𝑥 (𝑎) ∗ [𝑌]𝑞

Now we get an observation ⟨↑𝑥 ★= 𝑎⟩, which makes the

prophecy’s value ↑𝑥 effectively equal to the current state 𝑎.

We can use it for the postcondition to satisfy the rule’s spec

𝜆𝛹, [𝑏] . 𝑏.2 = 𝑏.1 →𝛹 [].

Unfreezing. Unfreezing of objects at a lifetime’s end

(endlft) can be proved easily. We first get a dead-lifetime

token [†𝛼] by consuming [𝛼]1 in the lifetime context. Using

it, we “execute” the view-shift wand of each frozen object

[†𝛼] ∃ ˆ𝑏. ⟨ ˆ𝑏 ★= 𝑎⟩ ∗ JTK(ˆ𝑏, 𝑡, a), to get an active object

JTK(ˆ𝑏, 𝑡, a). Thanks to the observation ⟨ ˆ𝑏 ★= 𝑎⟩ for each
object, we can prove the rule’s spec 𝜆𝛹, 𝑎.𝛹 𝑎.

Verifying specs for APIs with unsafe code. We can

also semantically verify all our RustHorn-style specs for safe
Rust APIs with unsafe implementations.
For an interesting example, let’s consider the iter_mut

method for converting a mutable reference &𝛼 mut Vec<T>
into a mutable iterator IterMut<𝛼,T> (§2.3). To verify the

method, it suffices to prove the following Hoare triple:{ 〈
𝜆𝜋 . |↑𝑥 𝜋 | = |𝑣 𝜋 | → (�̂� 𝜋) [zip (𝑣 𝜋) (↑𝑥 𝜋)]

〉
∗

[𝛼]𝑞 ∗ J&𝛼 mut Vec<T>K
(
★(𝑣, ↑𝑥), 𝑡, v

) }
iter_mut(v)

{
it. ∃ ˆ𝑏. ⟨𝜆𝜋 . (�̂� 𝜋) [ˆ𝑏 𝜋] ⟩ ∗

[𝛼]𝑞 ∗ JIterMut<𝛼,T>K(ˆ𝑏, 𝑡, it)
}

Here we sketch the proof. By Vec<T>’s semantics, the vec-

tor’s value 𝑣 decomposes into
★[𝑎1, . . . , 𝑎𝑛]. Now we cre-

ate new prophecies 𝑦1, . . . , 𝑦𝑛 along with a value observer

VO𝑦𝑖 (𝑎𝑖) and a prophecy controller PC𝑦𝑖 (𝑎𝑖) for each 𝑖 . We

then pick
ˆ𝑏 ≜ ★[★(𝑎1,↑𝑦1), . . . ,★(𝑎𝑛,↑𝑦𝑛)], and construct the

mutable iterator JIterMut<𝛼,T>K(ˆ𝑏, 𝑡, it), which is equiv-

alent to iterated separating conjunction of the (imaginary)

mutable reference J&𝛼 mut TK
(
★(𝑎𝑖 ,↑𝑦𝑖), 𝑡, [ℓ +𝑖 · |T|]

)
to the

𝑖-th element, over 𝑖 ∈ 1..𝑛 (where ℓ is the head location). Also,

we need the observation ⟨↑𝑥 ★= ★[↑𝑦1, . . . ,↑𝑦𝑛] ⟩. To achieve

this, we should split the borrow proposition of &𝛼 mut Vec<T>
to get the borrow propositions for IterMut<𝛼,T>, partially
resolving the old prophecy 𝑥 . Although we omit details here

for space reasons, even borrow subdivision like this can be

verified using our semantic model.

3.5 A Technical Problem Involving Step-Indexing
We now briefly describe a rather technical problem that we

encountered in developing RustHornBelt, which we over-

came by developing a more powerful model of the weakest

precondition in Iris.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

“Step-index hell”. The problem pertains to a core feature

of Iris’s semantic foundation, namely step-indexing [5, 2]. The
model of Iris propositions is parameterized by a “step-index”,
which roughly determines the depth of definedness of the

proposition (the higher the step-index, the more defined).

Step-indexing is reflected into the Iris logic via the so-called

later modality ⊲ 𝑃 : this intuitively means “𝑃 at one lower

step-index”, which is weaker than 𝑃 itself. We have already

seen the later modality showing up in the model of Box<T>
(§3.1), as well as in the rules for borrow propositions &

𝛼 𝑃

such as LftL-bor-acc. It is often used as a kind of “guard” to
ensure that recursive, higher-order constructions are well-

founded. The guard can be “stripped off” at certain moments

of “progress” in a proof, notably when reasoning about a

physical step of computation, at which point one can strip

one later ⊲ off any proposition in the proof context.

Although step-indexing is responsible for much of Iris’s

expressivity (especially “higher-order ghost state” [23]), it

can also lead to sticky situations. One such situation arises

in RustHornBelt when proving mutref-bye. We want to re-

solve the borrow’s prophecy to value 𝑎 using mut-resolve,

for which we need (for soundness, as explained in §3.2) to

produce [𝑌]𝑞 , the set of prophecy tokens for all prophecies

on which 𝑎 depends. However, in the case that the type of

borrowed data is a recursive type containing mutable refer-
ences, those prophecy tokens may be buried under statically
unbounded number of laters. This is a typical example of

the kind of “step-index hell” one often encounters when

developing semantic models of rich type systems.
15

Our solution. Our solution to this puzzle, in short, is to

strengthen the model of Iris weakest pre wp 𝑒 {𝛷} so that

reasoning about the 𝑛-th step of a program’s computation

can strip off 𝑛 laters, not just one. This works well thanks to
the following observation: it takes at least 𝑑 program steps

to construct an object of “pointer-nesting depth” 𝑑 . When

we want to unearth prophecy tokens from nested mutable

references inside an object after 𝑑 steps, the tokens could

be buried underneath at most 𝑑 laters, and so our improved

weakest pre can strip off all the laters we encounter.

Formally, we use a time receipt

▷◁

𝑛 [34], which persistently

records the fact that 𝑛 program steps have passed. We get▷◁

0 for free, and

▷◁

𝑛 grows into

▷◁ (𝑛 + 1) in one step. When

we have

▷◁

𝑛, we can strip off 𝑛 + 1 laters in one step:
16

wp-laters-time

𝑒 is not a value

▷◁

𝑛 ∗ |≡⇛▶⊲ 𝑛+1 𝑃 ∗ wp 𝑒 {𝛷} ⊢ wp 𝑒 {v. 𝑃 ∗𝛷 v }

15
The reader may wonder if we can use Transfinite Iris [41] instead of

Iris to solve this problem. Unfortunately we cannot, because in Transfinite

Iris we lose the ability to commute separating conjunction (∗) and later (⊲),

which our model (especially the lifetime logic) crucially relies on.

16
Here, instead of just ⊲𝑛+1 𝑃 we allow |≡⇛▶⊲ 𝑛+1 𝑃 , i.e., 𝑃 under 𝑛 + 1 laters

interleaved between fancy updates |⇛ (|⇛𝑄 is equivalent to True 𝑄).

We then add a pointer-nesting depth parameter 𝑑 to Rust-

HornBelt’s ownership predicate, which we connect to these

time receipts. For example, Box<T>’s semantics is updated to

JBox<T>K(𝑎, 𝑑 +1, 𝑡, [ℓ]) ≜ ∃v. · · · ∗⊲JTK(𝑎, 𝑑, 𝑡,v), where the
box pointer’s depth is set to one plus its target’s. Each object

is then equipped with a time receipt corresponding to the

depth: Ja : TK ≜ ∃𝑑.

▷◁

𝑑 ∗ JTK(𝑎, 𝑑, 𝑡, a) (we similarly update

Ja : †𝛼 TK). This time receipt gives us sufficient ammunition

to strip off as many laters as we might need in order to access

tokens buried within the object.

Remaining challenge. Unfortunately, reference-counted
pointers (such as those provided by the Rc API) make it

possible—when used in conjunctionwith APIs like RefCell—
to increase pointer-nesting depth by an unbounded quantity

in only one execution step (e.g., by concatenating lists). This

violates our key observation above (the linking of pointer-

nesting depth with execution time). Handling of these APIs

thus remains an intriguing technical challenge, which we

leave to future work.

4 Evaluation and Case Studies
We evaluated our approach discussed in §3 by fully mecha-

nizing the semantic soundness proof of the type-spec system

in the Coq proof assistant, verifying various safe Rust APIs

that encapsulate unsafe code (§4.1). We also confirmed that

RustHornBelt’s specs for Rust APIs (such as IterMut and

Cell) are in fact usable for automated verification of Rust

programs, via a RustHorn-style verifier Creusot (§4.2).

4.1 Mechanization in Coq
We built RustHornBelt’s Coq development by extending that

of RustBelt [21]. It has ~19kLOC of Coq code in total. We

were able to reuse the key sub-components, the lifetime logic
(~2kLOC) and the untyped core calculus (𝜆Rust) (~3kLOC), as

well as the overarching proof structure for verifying the type

system. The development took two implementors ~6 months

to complete, adding ~7kLOC to the final proofs.

We first modeled basic Rust types and verified type-spec

rules for operations on them, extending RustBelt with func-

tional specs. The verified basic types include: box pointer

Box<T>, shared and mutable references &𝛼 (mut) T, tuple
(T1,. . .,T𝑛), sum T1 + · · · + T𝑛

17
, array [T;𝑛], integer int,

boolean bool, function fn(T) -> T', and recursive types
18
.

Then we also modeled advanced Rust types and verified

type-spec rules for key API functions encapsulating unsafe

code, including:

• Vector Vec<T> — new, drop, len, push, pop,
index(_mut), as_(mut_)slice/iter(_mut)19

17
This amounts to Rust’s enum type.

18
This supports non-covariant recursion, e.g., recursion with self reference

under the mutable reference &𝛼 mut.
19

We equate the two methods, because we used the same model for the

shared/mutable slice and iterator.

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

LOC

API #Funs Type Code Proof

Vec 9 147 59 459

SmallVec 9 209 75 619

&𝛼 (mut) [T] / Iter(Mut) 9 253 38 428

Cell 8 102 20 188

Mutex / MutexGuard 7 258 30 222

JoinHandle 2 73 12 52

MaybeUninit 5 140 8 108

Misc 3 0 14 85

Figure 1.Coqmechanization of Rust APIs. #Funs: Number of

the functions verified. Type: LOC of the semantic model and

proof for the type(s). Code: LOC of the 𝜆Rust implementation

of the functions. Proof: LOC of the verification proof of the

type-spec rules.

• Small-vector SmallVec<T,𝑛> — new, drop, len, push,
pop, index(_mut), as_(mut_)slice/iter(_mut)19

• Shared/mutable slice &𝛼 (mut) [T] — len,
split_at(_mut), [T;𝑛]::as_(mut_)slice

• Shared/mutable iterator Iter(Mut)<𝛼,T>20 —
Iter(Mut)::next, Iter(Mut)::next_back

• Cell Cell<T> — new, into_inner, from_mut,
get_mut, get, set, replace

• Mutex Mutex<T> — new, into_inner, get_mut, lock
• Mutex guard MutexGuard<𝛼,T> — deref(_mut), drop
• Thread / JoinHandle<T> — spawn, join
• Maybe-uninitialized MaybeUninit<T> — new,
uninit, assume_uninit(_ref, _mut)

• Misc — swap, panic!,21 assert!21

We implemented each function in our core calculus 𝜆Rust.

As in RustBelt, our 𝜆Rust implementation of each function

is meant to extract the essence of the real-world Rust im-

plementation, simplifying away uninteresting details. For

example, our 𝜆Rust version of Vec::push uses a simpler real-

location strategy than the original Rust version.

In Fig. 1, we report the code size of the implementation

and proof of a selection of Rust APIs. A function with a

large implementation and involving mutable borrows tends

to require a larger code size and more significant proof effort.

Roughly speaking, modeling a Rust type took ~1 hour, and

verifying each function took about 10 minutes–2 hours for

us. We still need a large amount of boilerplate code for the

proof. Further automation of this part is left to future work.

We also validated our type-spec system by (somewhat

manually) verifying small Rust programs, with ~800 LOC of

Coq code. The verified programs include what correspond

to inc_vec and inc_cell shown in §2.3, demonstrating the

Rust APIs Vec, IterMut and Cell.

20
For simplicity, for the shared/mutable iterator Iter(Mut)<𝛼,T>, we used

the same model as the shared/mutable slice &𝛼 (mut) [T].
21

Abortion is implemented just as a stuck term.

LOC

Name Code Spec #VCs Time/VC

List-Reversal 22 10 1 0.09

All-Zero 12 6 2 0.05

Go-IterMut 14 11 1 0.23

Even-Cell 15 6 3 0.03

Fib-Memo-Cell 29 53 28 0.06

Even-Mutex 38 13 3 0.03

Knights-Tour 131 47 10 0.12

Figure 2. Creusot benchmarks. Code: LOC of the program

code verified. Spec: LOC of the specs added to the program,

including lemmas and definitions. #VCs: Number of the VCs

generated by Why3. Time/VC: Average time (seconds) to

solve each VC.

4.2 Case Studies in Creusot
We confirmed that our API specs verified by RustHorn-

Belt are useful by using them to semi-automatically ver-

ify several example client Rust programs in a pre-existing

RustHorn-style semi-automated verifier, Creusot [15] (avail-

able at https://github.com/xldenis/creusot/). Creusot takes as
input a Rust programwith spec annotations and then verifies

the program by generating VCs (verification conditions) fed

to SMT solvers, using Why3 [18] as a backend engine.

Benchmarks. We implemented a Rust library provid-

ing specifications for Vec, IterMut, Cell, and Mutex. Using
the library, we implemented seven verification benchmarks

totaling 407 lines of code, specs included. We verified the

benchmarks with Creusot, using Why3 configured with a

standard automated proof strategy, and using Z3 [13] 4.8.12

or CVC4 [7] 1.8.0 as the backend SMT solver. The bench-

marks were executed on Ubuntu 21.04 with an Intel Core

i5-10310U CPU and 16 GiB of RAM.

In Fig. 2, we present our benchmarks and evaluation re-

sults. List-Reversal proves in-place list reversal. All-Zero
uses a loop to zero each element of a mutably borrowed

vector. Go-IterMut increments each element of a vector

through a mutable iterator. Even-Cell and Even-Mutex per-
form invariant-based verification on Cell and Mutex, respec-
tively. Knights-Tour demonstrates scalability on a larger

example.

Defunctionalized invariants. In our Coq formalization

of RustHornBelt, each cell is represented as an invariant of

the predicate sort ⌊T⌋ → Prop. Since a higher-order structure
like that can’t be directly handled by today’s SMT solvers, we

defunctionalize such invariants for verification in Creusot.

We introduce a trait (analogous to type class in Haskell)

Inv<T> for a ghost type I that expresses an invariant over T:

trait Inv<T>: 'static {

#[predicate] fn inv(&self, a: T) -> bool; }

https://github.com/xldenis/creusot/

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

For example, we can make a ghost type Even that expresses

the “evenness” invariant on integers (u64 in Rust):

struct Even {}

impl Inv<u64> for Even {

#[predicate] fn inv(&self, a: u64) -> bool {

a % 2 == 0 } }

Then we construct a wrapper type Cell<T,I>, which anno-

tates the standard Cell<T> with the ghost object i : I for

the invariant. The methods get and set on Cell<T,I> are
given the invariant-based specs (which are trusted):

struct Cell<T,I> { c: std::cell::Cell<T>; i: I; }

impl<T: Copy, I: Inv<T>> Cell<T,I> {

#[trusted] #[ensures(self.i.inv(result))]

fn get(&self) -> T { self.c.get() }

#[trusted] #[requires(self.i.inv(a))]

fn set(&self, a: T) { self.c.set(a) } }

For example, we can automatically verify Even-Cell using
Cell<u64,Even>.

Fib-Memo-Cell. This benchmark Fib-Memo-Cell veri-

fies amemoized recursive function. It uses a vector of cells of

type Vec<Cell<Option<u64>,Fib>> for memoization, with

the invariant that the 𝑖-th Cell in the vector should either

store None or Some(fib 𝑖), where fib 𝑖 is the 𝑖-th Fibonacci

number. We encode this invariant on each Cell using the

ghost type Fib. Unlike Even, Fib actually wraps a (ghost)

payload of type usize, which represents the index 𝑖 at which
the cell is stored in the vector (and which we ensure matches

the actual index of the cell by placing an extra precondition

on the function).

Even-Mutex. The benchmark Even-Mutex is a concurrent
version of Even-Cell, proving that the concurrently shared

mutable value is always even. We represent each mutex

Mutex as a defunctionalized invariant, just like Cell. Lock-
ing a mutex returns a MutexGuard, which can be used to

read from and write to the mutex. For concurrency, we use

spawn/join to spawn and join several threads. In Rust, spawn
takes a closure which will be executed. Before we call spawn,
we should satisfy the closure’s precondition. After we call

join on the JoinHandle returned by spawn, we obtain a

result that satisfies the closure’s postcondition.

5 Related Work
Prophecies. First introduced to prove refinement between

state machines [1], prophecies have been studied for decades,

although they still remain a somewhat exotic technique.

Jung et al. [24] modeled prophecies in Iris (influenced by

existing literature [44, 46]), mainly to prove logical atomicity
of tricky concurrent data structures (though there have been

other applications [14]). In their approach, to ensure consis-

tency of prophecy reasoning, prophecy creation and reso-

lution take the form of ghost program instructions, which

provide a sort of “ground truth” for the prophecy, but also re-

quire cumbersome user annotations. Moreover, their prophe-

cies distinguish between the name of a prophecy and the

value it resolves to (mediated by a kind of “prophecy heap”

mapping prophecy names to values). As such, they do not

provide a way to resolve a prophecy to a value that mentions

the values of other (as yet unresolved) prophecy variables—a

feature we require in RustHornBelt to model nested borrows

and borrow subdivisions.

For separation logic verification of fine-grained concur-

rency like Jung et al. aimed at, Turon et al. [42] and Liang

and Feng [29] employed a technique of speculation. Their ap-
proach allows the proof to speculate about multiple possible

logical states, combine them through the “speculative choice”

connective 𝑃 ⊕𝑄 , and then cull the set of possible states once

more information becomes available later in the proof. How-

ever, it does not provide an analogue of prophecy variables.

In contrast, our prophecy framework provides persistent ob-
servations ⟨ ˆ𝜙 ⟩, which can express knowledge of prophecy

variables’ values that holds under all possible futures.

Proof of RustHorn. Our work does not fully subsume

the original proof of RustHorn’s translation [32, 33], in that

they also proved completeness while we prove only sound-

ness. Completeness is in fact lost for APIs with interior muta-

bility like Cell and Mutex in the invariant style, as invariants
can’t precisely track dynamic state changes in general.

Verifying Rust programs. Prusti [6] analyzes type in-
formation from the Rust compiler to synthesize verification

conditions in the separation logic Viper [36], suited for au-

tomated verification. They directly reconstruct the flow of

ownership with the help of lifetime information from the

Rust compiler. To model a mutable borrow, they introduced

pledges, which models a property that is true at the bor-

row’s end. However, their approach struggles with certain

advanced use cases of mutable borrows, and they do not

support unsafe Rust code.

Electrolysis [43] developed a translation from a Rust pro-

gram to a purely functional program, which can then be

verified manually in a proof assistant. The translation works

for a few specific patterns of borrowing, but fails to handle

common usages like max_mut in §2.1. The translation has

also not been formally proved sound.

Acknowledgments
We thank Ralf Jung, Naoki Kobayashi, and the anonymous

reviewers for their helpful comments. This research was

supported in part by a European Research Council (ERC)

Consolidator Grant for the project “RustBelt”, funded under

the European Union’s Horizon 2020 Framework Programme

(grant agreement no. 683289), and in part by JSPS KAKENHI

Grant Number JP21J20459 “Theory and application for robust

and high-performance systems programming languages”.

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code PLDI ’22, June 13–17, 2022, San Diego, CA, USA

References
[1] Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement

Mappings. In Proceedings of the Third Annual Symposium on Logic
in Computer Science (LICS). IEEE Computer Society, 165–175. https:
//doi.org/10.1109/LICS.1988.5115

[2] Amal Ahmed. 2004. Semantics of Types for Mutable State. Ph.D. Dis-
sertation. Princeton University.

[3] Amal Ahmed, Andrew W. Appel, Christopher D. Richards, Kedar N.

Swadi, Gang Tan, and Daniel C. Wang. 2010. Semantic foundations

for typed assembly languages. ACM Trans. Program. Lang. Syst. 32, 3
(2010), 7:1–7:67. https://doi.org/10.1145/1709093.1709094

[4] Andrew W. Appel. 2001. Foundational Proof-Carrying Code. In 16th
Annual IEEE Symposium on Logic in Computer Science, Boston, Mas-
sachusetts, USA, June 16-19, 2001, Proceedings. IEEE Computer Society,

247–256. https://doi.org/10.1109/LICS.2001.932501
[5] Andrew W. Appel and David A. McAllester. 2001. An indexed model

of recursive types for foundational proof-carrying code. ACM Trans.
Program. Lang. Syst. 23, 5 (2001), 657–683. https://doi.org/10.1145/
504709.504712

[6] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J.

Summers. 2019. Leveraging Rust Types for Modular Specification and

Verification. Proceedings of the ACM on Programming Languages 3,
OOPSLA (2019), 147:1–147:30. https://doi.org/10.1145/3360573

[7] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana

Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare

Tinelli. 2011. CVC4. In Computer Aided Verification - 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings
(Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan

and Shaz Qadeer (Eds.). Springer, 171–177. https://doi.org/10.1007/978-
3-642-22110-1_14

[8] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon

Peyton Jones, and Arnaud Spiwack. 2018. Linear Haskell: Practical

Linearity in a Higher-Order Polymorphic Language. PACMPL 2, POPL

(2018), 5:1–5:29. https://doi.org/10.1145/3158093
[9] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey

Rybalchenko. 2015. Horn Clause Solvers for Program Verification. In

Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich
on the Occasion of His 75th Birthday (Lecture Notes in Computer Science,
Vol. 9300), Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz,

Bernd Finkbeiner, and Wolfram Schulte (Eds.). Springer, 24–51. https:
//doi.org/10.1007/978-3-319-23534-9_2

[10] Arthur Charguéraud and François Pottier. 2008. Functional translation

of a calculus of capabilities. In Proceeding of the 13th ACM SIGPLAN
international conference on Functional programming, ICFP 2008, Victoria,
BC, Canada, September 20-28, 2008, James Hook and Peter Thiemann

(Eds.). ACM, 213–224. https://doi.org/10.1145/1411204.1411235
[11] David G. Clarke, John Potter, and James Noble. 1998. Ownership Types

for Flexible Alias Protection. In Proceedings of the 1998 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA), Bjørn N. Freeman-Benson and Craig Chambers

(Eds.). ACM, 48–64. https://doi.org/10.1145/286936.286947
[12] Coq Community. 2021. The Coq Proof Assistant. https://coq.inria.fr/
[13] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Effi-

cient SMT Solver. In Tools and Algorithms for the Construction and Anal-
ysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings
(Lecture Notes in Computer Science, Vol. 4963), C. R. Ramakrishnan and

Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/10.1007/978-3-
540-78800-3_24

[14] Paulo Emílio de Vilhena, François Pottier, and Jacques-Henri Jourdan.

2020. Spy Game: Verifying a Local Generic Solver in Iris. Proceedings
of the ACM on Programming Languages 4, POPL (2020), 33:1–33:28.

https://doi.org/10.1145/3371101

[15] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2021. The

Creusot Environment for the Deductive Verification of Rust Programs.

(2021). https://hal.inria.fr/hal-03526634
[16] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.

https://www.worldcat.org/oclc/01958445
[17] Dropbox. 2020. Rewriting the Heart of Our Sync Engine - Drop-

box. https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-
sync-engine

[18] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where

Programs Meet Provers. In Programming Languages and Systems -
22nd European Symposium on Programming, ESOP (Lecture Notes in
Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner

(Eds.). Springer, 125–128. https://doi.org/10.1007/978-3-642-37036-
6_8

[19] Google. 2021. Rust in the Android platform. https://security.googleblog.
com/2021/04/rust-in-android-platform.html

[20] Ralf Jung. 2020. Understanding and Evolving the Rust Programming
Language. Ph.D. Dissertation. Saarland University, Saarbrücken,

Germany. https://publikationen.sulb.uni-saarland.de/handle/20.500.
11880/29647

[21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2018. RustBelt: Securing the Foundations of the Rust Programming

Language. Proceedings of the ACM on Programming Languages 2, POPL
(2018), 66:1–66:34. https://doi.org/10.1145/3158154

[22] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2021. Safe systems programming in Rust. Commun. ACM 64, 4 (2021),

144–152. https://doi.org/10.1145/3418295
[23] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars

Birkedal, and Derek Dreyer. 2018. Iris from the Ground Up: A Modular

Foundation for Higher-Order Concurrent Separation Logic. Jour-
nal of Functional Programing 28 (2018), e20. https://doi.org/10.1017/
S0956796818000151

[24] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna

Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs. 2020. The

Future is Ours: Prophecy Variables in Separation Logic. Proceedings
of the ACM on Programming Languages 4, POPL (2020), 45:1–45:32.

https://doi.org/10.1145/3371113
[25] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL, Sriram K. Rajamani and David Walker

(Eds.). ACM, 637–650. https://doi.org/10.1145/2676726.2676980
[26] Hari Govind V K, Sharon Shoham, and Arie Gurfinkel. 2022. Solving

ConstrainedHornClausesModuloAlgebraic Data Types and Recursive

Functions. Proceedings of the ACM on Programming Languages POPL
(1 2022).

[27] Steve Klabnik, Carol Nichols, and Rust Community. 2018. The Rust
Programming Language. https://doc.rust-lang.org/book/

[28] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive

Proofs in Higher-Order Concurrent Separation Logic. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL, Giuseppe Castagna and Andrew D. Gordon (Eds.).

ACM, 205–217. https://doi.org/10.1145/3009837
[29] Hongjin Liang and Xinyu Feng. 2013. Modular Verification of Lineariz-

ability with Non-Fixed Linearization Points. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI,
Hans-Juergen Boehm and Cormac Flanagan (Eds.). ACM, 459–470.

https://doi.org/10.1145/2491956.2462189
[30] Nicholas D. Matsakis and Felix S. Klock, II. 2014. The Rust Language.

In Proceedings of the 2014 ACM SIGAda annual conference on High
integrity language technology, HILT, Michael Feldman and S. Tucker

Taft (Eds.). ACM, 103–104. https://doi.org/10.1145/2663171.2663188

https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1109/LICS.1988.5115
https://doi.org/10.1145/1709093.1709094
https://doi.org/10.1109/LICS.2001.932501
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/3158093
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1145/1411204.1411235
https://doi.org/10.1145/286936.286947
https://coq.inria.fr/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3371101
https://hal.inria.fr/hal-03526634
https://www.worldcat.org/oclc/01958445
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://dropbox.tech/infrastructure/rewriting-the-heart-of-our-sync-engine
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://security.googleblog.com/2021/04/rust-in-android-platform.html
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3418295
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://doc.rust-lang.org/book/
https://doi.org/10.1145/3009837
https://doi.org/10.1145/2491956.2462189
https://doi.org/10.1145/2663171.2663188

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek Dreyer

[31] Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek

Dreyer. 2022. RustHornBelt: A Semantic Foundation for Functional
Verification of Rust Programs with Unsafe Code, Artifact. https://doi.
org/10.5281/zenodo.6501665 Latest version of the Coq mechanization

and the Creusot benchmarks available at https://gitlab.mpi-sws.org/
iris/lambda-rust/-/tree/masters/rusthornbelt and https://github.com/
xldenis/rhb-specs, respectively.

[32] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2020.

RustHorn: CHC-based Verification for Rust Programs. In Programming
Languages and Systems - 29th European Symposium on Programming,
ESOP (Lecture Notes in Computer Science, Vol. 12075), Peter Müller (Ed.).

Springer, 484–514. https://doi.org/10.1007/978-3-030-44914-8_18
[33] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. 2021.

RustHorn: CHC-Based Verification for Rust Programs. ACM Trans.
Program. Lang. Syst. 43, 4, Article 15 (October 2021), 54 pages. https:
//doi.org/10.1145/3462205

[34] Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time

Credits and Time Receipts in Iris. In Programming Languages and
Systems - 28th European Symposium on Programming, ESOP (Lecture
Notes in Computer Science, Vol. 11423), Luís Caires (Ed.). Springer, 3–29.
https://doi.org/10.1007/978-3-030-17184-1_1

[35] Mozilla. 2021. Rust language — Mozilla Research. https://research.
mozilla.org/rust/

[36] PeterMüller, Malte Schwerhoff, andAlexander J. Summers. 2016. Viper:

A Verification Infrastructure for Permission-Based Reasoning. In Ver-
ification, Model Checking, and Abstract Interpretation - 17th Interna-
tional Conference, VMCAI (Lecture Notes in Computer Science, Vol. 9583),
Barbara Jobstmann and K. Rustan M. Leino (Eds.). Springer, 41–62.

https://doi.org/10.1007/978-3-662-49122-5_2
[37] npm. 2019. Rust Case Study: Community Makes Rust an Easy Choice for

npm. https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.
pdf

[38] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local

Reasoning about Programs that Alter Data Structures. In Computer
Science Logic, 15th International Workshop, CSL 2001. 10th Annual Con-
ference of the EACSL (Lecture Notes in Computer Science, Vol. 2142),
Laurent Fribourg (Ed.). Springer, 1–19. https://doi.org/10.1007/3-540-
44802-0_1

[39] Rust Community. 2021. Rust Programming Language. https://www.
rust-lang.org/

[40] Rust Community. 2021. Sponsors — Rust Programming Language. https:
//www.rust-lang.org/sponsors

[41] Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert

Krebbers, Derek Dreyer, and Lars Birkedal. 2021. Transfinite Iris:

resolving an existential dilemma of step-indexed separation logic. In

PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 80–95.

https://doi.org/10.1145/3453483.3454031
[42] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,

and Derek Dreyer. 2013. Logical Relations for Fine-Grained Concur-

rency. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL, Roberto Giacobazzi and Radhia

Cousot (Eds.). ACM, 343–356. https://doi.org/10.1145/2429069.2429111
[43] Sebastian Ullrich. 2016. Simple Verification of Rust Programs

via Functional Purification. Master’s thesis. Karlsruhe Insti-

tute of Technology. https://pp.ipd.kit.edu/uploads/publikationen/
ullrich16masterarbeit.pdf

[44] Viktor Vafeiadis. 2008. Modular Fine-Grained Concurrency Verification.
Ph.D. Dissertation. University of Cambridge, UK. http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.612221

[45] Philip Wadler. 1990. Linear Types Can Change the World!. In Pro-
gramming concepts and methods: Proceedings of the IFIP Working Group
2.2, 2.3 Working Conference on Programming Concepts and Methods,
Manfred Broy (Ed.). North-Holland, 561.

[46] Zipeng Zhang, Xinyu Feng, Ming Fu, Zhong Shao, and Yong Li. 2012. A

Structural Approach to Prophecy Variables. In Theory and Applications
of Models of Computation - 9th Annual Conference, TAMC (Lecture Notes
in Computer Science, Vol. 7287), Manindra Agrawal, S. Barry Cooper,

and Angsheng Li (Eds.). Springer, 61–71. https://doi.org/10.1007/978-
3-642-29952-0_12

https://doi.org/10.5281/zenodo.6501665
https://doi.org/10.5281/zenodo.6501665
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt
https://gitlab.mpi-sws.org/iris/lambda-rust/-/tree/masters/rusthornbelt
https://github.com/xldenis/rhb-specs
https://github.com/xldenis/rhb-specs
https://doi.org/10.1007/978-3-030-44914-8_18
https://doi.org/10.1145/3462205
https://doi.org/10.1145/3462205
https://doi.org/10.1007/978-3-030-17184-1_1
https://research.mozilla.org/rust/
https://research.mozilla.org/rust/
https://doi.org/10.1007/978-3-662-49122-5_2
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/3-540-44802-0_1
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/sponsors
https://www.rust-lang.org/sponsors
https://doi.org/10.1145/3453483.3454031
https://doi.org/10.1145/2429069.2429111
https://pp.ipd.kit.edu/uploads/publikationen/ullrich16masterarbeit.pdf
https://pp.ipd.kit.edu/uploads/publikationen/ullrich16masterarbeit.pdf
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612221
https://doi.org/10.1007/978-3-642-29952-0_12
https://doi.org/10.1007/978-3-642-29952-0_12

	Abstract
	1 Introduction
	2 Overview of RustHornBelt
	2.1 Key Idea of RustHorn: Mutable Borrows Expressed in FOL via Prophecies
	2.2 Type-Spec System: Our Formalization of RustHorn-Style Verification
	2.3 Rust APIs with Unsafe Code

	3 Proving Semantic Soundness of the Type-Spec System
	3.1 Basics of Our Semantic Approach
	3.2 Our Key Innovation: Parametric Prophecies
	3.3 RustHornBelt's Model of Mutable Borrows
	3.4 Proving Soundness of Type-Spec Rules
	3.5 A Technical Problem Involving Step-Indexing

	4 Evaluation and Case Studies
	4.1 Mechanization in Coq
	4.2 Case Studies in Creusot

	5 Related Work
	Acknowledgments
	References

