
Type invariants and ghost code for deductive
verification of Rust code

Jacques-Henri Jourdan (jacques-henri.jourdan@cnrs.fr)

M2 internship proposal (2022-2023, second semester)

1 Context
The Creusot [1, 2] tool, developed in the LMF laboratory since 2020 aims at
formally verifying Rust programs by letting the users manually write specifica-
tions in their programs, and letting a mostly automated tool chain try to check
that they are correct. It does so by translating annotated Rust code into a vari-
ant of the WhyML language accepted by the Why3 tool, and then use Why3
to generate verification conditions which are discharged by various automated
provers.

Type invariants and ghost code are tools provided by deductive verification
tools such as Why3, which improve both the expressiveness and usability. Type
invariants lets adding properties holding for all values of a types behind its
abstraction barrier, and ghost code allows the user to write code and manipulate
values that will not have any impact on the execution of the program, and
thus are removed at compile time. Creusot lacks good support for them. This
internship subject aims at fixing this issue.

2 Language integration and experiments
Creusot leverages the non-aliasing guarantees provided by Rust’s type system
in order to generate simpler WhyML code, which makes easier to discharge the
verification conditions by provers: even though the code written in Rust usually
contains side effects, the generated WhyML code is, in some sense, free of side
effects. This ingenious translation comes at a cost: in order to translate mutable
borrows (a certain kind of pointers in Rust), it is necessary to use the concept
of prophecy, which makes possible to speculate in the proof over the future of
the execution of the program [5].

It is unclear how invariants and ghost code should interact with the prophetic
encoding of mutable borrows. An easy possibility would be to completely forbid
ghost code to depend on prophecies, and make type invariants predicates that
must be true for any value of a type. However, more expressive alternative
might exist:

1. A variant of invariants, historical invariants, makes it possible to express
properties of the evolution of values. Historical invariant could be used,
for example, to relate the current and final (prophetic) value pointed to

1



by a mutable borrow. We have several examples where historical invariant
could drastically simplify some specifications.

2. Ghost variables cannot depend in an unrestricted manner on prophecies
without causing unsoundness. However, common uses of ghost variables
in e.g., Why3, include model fields which attach a ghost field containing
its logical model to a value in Creusot. This kind of use of ghost variable
does require them to depend on prophecies. It is therefore interesting to
tell what restrictions should we impose to preserve soundness.

There are other interesting questions to answer about the integration of these
features in Creusot: how should these features be specified in Creusot code?
When should invariant be enforced, exactly?

During the internship, we would like to explore the various possibilities, and
do experiments by verifying simple examples in order to get a better idea of
the various trade-offs. This will involve thinking about language design issues,
writing Rust code in the implementation of Creusot itself, and proving simple
Rust functions with this patched version of Creusot.

3 Metatheoretical study
While the prophetic encoding to a purely functional program simplifies writing
specifications and reason about them, its soundness in far from trivial: we must
ensure that these prophecies do not create causality loops, which would allow
proving false. This proof of soundness is the goal of an existing formalization
of this translation [4]. This formalization uses a logical relation for the type
system of Rust, built using the Iris separation logic [3]. Depending on the kind
of invariant and ghost code that we choose to add to Creusot, their soundness
can be more or less easy to establish.

Therefore, an interesting task during the internship will be, if judged useful
and if the intern is interested, to extend the existing formalization with ghost
code and invariants. This will involve a theoretical study of these notions, and
their formalization within the Iris separation logic in the Coq proof assistant.

4 Ghost ownership
While ghost variable are usually thought of as containing pure mathematical
values that do not carry any ownership, we may ask ourselves whether it is
useful in some cases to make non-duplicable the value they contain. If we do
so, ghost variables will not only contain mathematical values, but they will
also carry ghost resources. Such ghost resources have found useful for software
verification: notably, they are the primitive used in Iris to specify a large variety
of functions and libraries.

During the internship, we will explore this idea of making non-duplicable
some ghost variables to specify the behavior of some libraries. In particular,
ghost ownership could be useful to specify Rust libraries featuring interior mu-
tability, where the non-aliasing guarantees of Rust’s type system do not apply [6].
Because these libraries are particularly useful in a concurrent setting, ghost own-
ership may have interesting applications for the verification of multi-threaded

2



programs. Of course, the use of these techniques pose interesting metatheoreti-
cal questions that we may study as well.

5 Practical aspects
The internship will last a semester. The intern is expected to follow the second
year of a research master program (or equivalent). The intern will be advised by
Jacques-Henri Jourdan, CNRS researcher at the LMF laboratory, at Université
Paris-Saclay. Xavier Denis, the main developer of Creusot, will participate to
the discussions and answer questions whenever necessary. The internship may
be followed by a PhD thesis if both the intern and the advisor are interested,
and if founding permits.

References
[1] The creusot tool for rust deductive verification. https://github.com/

xldenis/creusot/.

[2] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: A
foundry for the deductive verification of rust programs. In International
Conference on Formal Engineering Methods, 2022.

[3] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. Journal of Functional
Programming, 28, 2018.

[4] Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, and Derek
Dreyer. Rusthornbelt: a semantic foundation for functional verification of
rust programs with unsafe code. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implemen-
tation, pages 841–856, 2022.

[5] Yusuke Matsushita, Takeshi Tsukada, and Naoki Kobayashi. Rusthorn: Chc-
based verification for rust programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 43(4):1–54, 2021.

[6] Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. Ghost-
cell: separating permissions from data in rust. Proceedings of the ACM on
Programming Languages, 5(ICFP):1–30, 2021.

3

https://github.com/xldenis/creusot/
https://github.com/xldenis/creusot/

	Context
	Language integration and experiments
	Metatheoretical study
	Ghost ownership
	Practical aspects

